CEE 361/ MAE 325 / MSE 331 : Matrix Structural Analysis and Introduction to Finite-Element Methods

Lectures: Tue Thu 11:00AM-12:20PM, Friend Center 008

Precept: Wed 7:30PM-8:30PM, Friend Center 008

Overview

The course introduces fundamental concepts and technologies of primal finite element methods for linear elliptic boundary value problems.

The course covers an overview of finite element methods for a one-dimensional model problem including the weak, Galerkin and matrix forms, error analysis and superconvergence. The direct stiffness method of structural analysis is introduced to present the notion of assembly.

Extension of finite element methods to multiple dimensions are carried out, first for second order scalar valued equations, such as the heat equation and Darcy's flow in porous materials, and later extended to vector valued equations such as the elasticity equations. The course then concludes with the C^0 approach to plates and beams and contrasts it with matrix structural analysis approaches.

The element formulations and data structures, isoparametric interpolations, locking issues, analysis of errors and convergence of approximations, as well as treatment of constraints and variational crimes will all be discussed.

Pre-requisites

The students should have a background in multivariable calculus (MAT 202) and linear algebra (MAT 201). Prior programming experience (in particular with python) will be beneficial but not necessary.

Instructor:	Maurizio M. Chiaramonte E324 Engineering Quad chiaramonte@princeton.edu Office hours: Wed 1:30pm - 3:30pm, EQuad E324
Assistant:	lsabel Morris imorris@princeton.edu Office hours: Wed 8:30pm - 10:20pm, Friend Center 008
Course website:	finiteelements.princeton.edu The course website will contain homework notes, and other relevant course
	information. To access documents you will be prompted for a login. Use the following:
	username: bubnov
	pussiona. Batorata

Textbooks:	Suggested readings:
	T. J. R. Hughes. <i>The Finite Element Method: Linear Static and Dynamic Finite Element Analysis</i> . 1987. DOI: 620/âĂŃ.001/âĂŃ51535. URL: http://books.google.com/books?id=yarmSc7ULRsC.
	J. H. Prévost and S. Bagrianski. <i>An Introduction to Matrix Structural Analysis and Finite Element Methods.</i> WORLD SCIENTIFIC, Mar. 2017, pp. i-xiii. ISBN: 978-981-320-677-9. DOI: 10.1142/10358. URL: http://www.worldscientific.com/doi/abs/10.1142/9789813206793%7B%5C_%7Dfmatter%20http://www.worldscientific.com/worldscibooks/10.1142/10358.
Grading:	Letter grades A-F. Grades will be based on homework assignments (40%), a midterm & final exam ($2 \times 15\% = 30\%$) and a final project (30%).
	The final grade for the class is computed with both an absolute and relative (curve) scale. If you get above or equal to:
	 98% of the maximum score you get an A+ 90% of the maximum score you get an A 85% of the maximum score you get an A- 80% of the maximum score you get an B+ 75% of the maximum score you get an B 70% of the maximum score you get an C+ 60% of the maximum score you get an C 55% of the maximum score you get an D+ 45% of the maximum score you get an D
	If you get less than 45% of the maximum score you get an F. Simultaneously, at least 25% of the class will get an A, at least 50% of the class will get a B or higher, and at least 75% of the class will get a C or higher, as long as the minimum of 45% of the maximum total score is achieved. This distribution will be achieved by uniformly shifting everyone's grade up by the same amount.
Homework:	Homework assignments will consist of a mixture of theory as well as compu- tational exercises. Homework will generally be posted on Monday and due a week later (the Monday after by 11:59pm). Homework will be submit- ted electronically through https://blackboard.princeton.edu dropbox. There will be 10 homework assignments. Students that typeset homework assignments in LATEX will receive 5% bonus points. Irrespective, homework should be neatly and clearly presented. If the quality of presentation is not satisfactory, the homework will receive a 0%. We will not accept late home- work, but the lowest grade on homework assignment will be dropped. Each homework will be equally weighted.
Exams:	The mid-term exam will be closed-book and closed-notes. It will focus on the theory and will be on October 25th.

Project:	The final project will be an open ended assignment where, as a future En- gineer, you will be assigned a challenge and are expected to find the best possible solution leveraging the skills you acquired in the course. More de- tails will follow.
Precepts:	These are interactive problem sessions where you get a chance to practice your skills while interacting with other students and the AI.
Attendance:	It is your responsibility to attend lectures and precepts while taking notes. Not all material discussed in lecture is available in the suggested readings.
Piazza:	This term we will be using Piazza for class discussion. The system is highly catered to getting you help fast and efficiently from classmates, the AI, and myself. Rather than emailing questions to the teaching staff, I encourage you to post your questions on Piazza.
	The piazza link for the course is: http://piazza.com/princeton/fall2018/ cee361mae325mse331cee513f18.

Course Outline

- 1. Math Preliminaries
 - (a) Tensor algebra and tensor calculus
 - (b) Review of partial differential equations
- 2. Direct Stiffness Methods
 - (a) Truss Equation
 - (b) Beam Equation
 - (c) Global Assembly
 - (d) Boundary conditions
- 3. One-dimensional Finite elements
 - (a) Intro to the Calculus of variations
 - (b) Strong and weak form
 - (c) Galerkin approximation
 - (d) Matrix form
 - (e) Shape functions
 - (f) Numerical integration
 - (g) Error analysis
- 4. Two and three space dimensions
 - (a) Review of tensors calculus
 - (b) Extension of the notions of strong, weak, and matrix forms
 - (c) Hexahedral elements
 - (d) Simplicial elements
 - (e) Isoparametric interpolations
- 5. C^0 approach to beams and shells
 - If Time Permits:
- 6. Time dependent problems
 - (a) Generalized θ method
 - (b) Stability of the θ -method
- 7. Analysis of Finite Element Methods
 - (a) Best approximation and error estimates
 - (b) Consistency & stability
 - (c) Locking issues

Additional topics - time permitting:

- 1. Constraints
 - (a) Lagrange multipliers
 - (b) Penalty methods
- 2. Finite elements contrasted to direct stiffness methods (2)
 - (a) Truss elements
 - (b) Beams

Tentative Schedule:

Monday	Tuesday	Wednesday	Thursday
Sep 10th 1	11th 2	12th 3	13th 4
			Course Overview
17th 5	18th 6	19th 7	20th 8
U	Review of PDFs &	Precent	Review of PDFs &
	Tensors	Πιεερι	Tensors
24th 9	25th 10	26th 11	27th 12
Homework: #1 Out	Direct Stiffness	Precept	Direct Stiffness
	Method		Method
	Trusses in 1D		Trusses in 1D
Oct 1st 13	2nd 14	3rd 15	4th 16
Homework: # 1 Due	Direct Stiffness	Precept	Direct Stiffness
- 2 Out	Method		Method
	Trusses in 2D		Trusses in 2D
8th 17	9th 18	10th 19	11th 20
Homework: # 2 Due	Direct Stiffness	Precept	Direct Stiffness
- 3 Out	Method		Method
	Beams in 1D		Beams in 2D
15th 21	16th 22	17th 23	18th 24
Homework: # 3 Due	1-D Finite Elements:	Precept	1-D Finite Elements:
- 4 Out	Strong and weak form		Galerkin
			Approximation
22nd 25	23rd 26	24th 27	25th 28
Homework: # 4 Due	1-D Finite Elements:	Precept	Midterm Exam
- 5 Out	Element View		Final project posted
0011	2011	01.1	
29th	30th	31st	Nov 1st
Fall Recess	Fall Recess	Fall Recess	Fall Recess
22nd25Homework:# 4 Due- 5 Out- 5 Out29th- 5 Fall Recess	23rd261-D Finite Elements: Element View30th Fall Recess	24th27Precept31stFall Recess	25th28Midterm ExamFinal project postedNov 1stFall Recess

Monday	Tuesday	Wednesday	Thursday
5th 29	6th 30	7th 31	8th 32
Homework: # 5 Due	1-D Finite Elements:	Precept	1-D Finite Elements:
- 6 Out	Shape Functions &		Error analysis
	numerical integration		
12th 33	13th 34	14th 35	15th 36
Homework: # 6 Due	n-D Finite Elements:	Precept	n-D Finite Elements:
- 7 Out	Review of tensors &		Strong, weak, and
	tensor calculus		matrix forms
19th 37	20th 38	21st	22nd
Homework: # 7 Due	n-D Finite Elements:	Thanksgiving Break	Thanksgiving Break
- 8 Out	Hexahedral elements		
00+1- 20	07+1- 40	00±b 41	00+h 10
20th 39	27th 40	28th 41	29th 42
Homework: $\#$ 8 Due	n-D Finite Elements:	Precept	n-D Finite Elements:
- 9 Out	Hexahedral elements		Simplicial elements
Dec 3rd 43	4th 44	5th 45	6th 46
Homework: # 9 Due	n-D Finite Elements:	Precept	C ⁰ approach to beams
- 10 Out	Simplicial elements		and shells
10th 47	11th 48	12th 49	13th 50
Homework: # 10 Due	C ⁰ approach to beams	Precept	Time dimension
	and shells		Final Project Due