HOMEWORK 1

CEE 361-513: Introduction to Finite Element Methods
Due: October 1, 2018
NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked with \star, but are encourage to attempt them anyhow.

PROBLEM 1

Unless otherwise specified, you may assume that $\left\{\mathbf{e}_{i}\right\}_{i=1}^{d}$ is a set of orthonormal basis associated with a set of cartesian coordinates $\left\{x_{i}\right\}_{i=1}^{d}$ (cf. the figure on the right). Use indicial notation when appropriate.

1. Show that for two vectors $\boldsymbol{a}, \boldsymbol{b}$ the following holds $\boldsymbol{a} \cdot(\boldsymbol{a} \times \boldsymbol{b})=0$.
2. Let $d=3$ and $\boldsymbol{u}(\boldsymbol{x})=x_{1} x_{2} x_{3} \mathbf{e}_{1}+x_{1} \mathbf{e}_{2}+x_{1} \mathbf{e}_{3}$ compute $\nabla \boldsymbol{u}$ and $\nabla \cdot \boldsymbol{u}$.
3. Let $d=2, \boldsymbol{u}(\boldsymbol{x})=x_{1} x_{2} \mathbf{e}_{1}+x_{1} \mathbf{e}_{2}$, and $\boldsymbol{v}(\boldsymbol{x})=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}$. If $\boldsymbol{T}=T_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}=\boldsymbol{u} \otimes \boldsymbol{v}$, what are the values of $T_{i j}$.
4. What is the value of $\boldsymbol{I}: \boldsymbol{I}$, where \boldsymbol{I} is the identity tensor.
5. Let \boldsymbol{u} be a vector. Is $\boldsymbol{T}(\boldsymbol{u})=\exp \left(\boldsymbol{u} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}$ a tensor? Show why or why not.
6. Let \boldsymbol{u} be a vector. Is $\boldsymbol{T}(\boldsymbol{u})=10\left(\boldsymbol{u} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{1}+\left(\boldsymbol{u} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{2}$ a tensor? Show why or why not.
7. \star Show that $(\boldsymbol{u} \otimes \boldsymbol{v}) \cdot(\boldsymbol{A})=\boldsymbol{u} \otimes \boldsymbol{A}^{\top} \boldsymbol{v}$.
8. \star Show that $\nabla \cdot(\psi \boldsymbol{u})=\nabla \psi \cdot \boldsymbol{u}+\psi \nabla \cdot \boldsymbol{u}$ for $\boldsymbol{u} \in \mathbb{R}^{d}, \psi \in \mathbb{R}$.

9. \star Show that $\nabla \cdot(\boldsymbol{u} \otimes \boldsymbol{v})=\nabla \boldsymbol{u} \boldsymbol{v}+\boldsymbol{u} \nabla \cdot \boldsymbol{v}$.

PROBLEM 2

To practice with Python do the following operations

1. Let $\boldsymbol{u}=1 \mathbf{e}_{1}+2 \mathbf{e}_{2}$. Construct a unit vector \boldsymbol{n} such that $\boldsymbol{u} \cdot \boldsymbol{n}=0$. (Hint: create any vector \boldsymbol{v} that is not linearly dependent with \boldsymbol{u}, then let $\boldsymbol{w}=\boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{u} /\|\boldsymbol{u}\|^{2} \boldsymbol{u}$ and then let $\left.\boldsymbol{n}=\boldsymbol{w} /\|\boldsymbol{w}\|\right)$.
2. Let $\boldsymbol{u}=3 \mathbf{e}_{1}+2 \mathbf{e}_{2}+4 \mathbf{e}_{3}, \boldsymbol{v}=5 \mathbf{e}_{1}+1 \mathbf{e}_{2}+4 \mathbf{e}_{3}$. Construct a unit vector \boldsymbol{n} that is orthogonal to $\boldsymbol{u}, \boldsymbol{v}$. (Hint: \times)
3. Given two points $\boldsymbol{x}_{a}=1 \mathbf{e}_{1}+2 \mathbf{e}_{2}, \boldsymbol{x}_{b}=5 \mathbf{e}_{1}+7 \mathbf{e}_{2}$, construct a tensor \boldsymbol{T} that projects vectors along the direction of $\boldsymbol{a}=\boldsymbol{x}_{b}-\boldsymbol{x}_{a}$. Remember that a projection must satisfy $\boldsymbol{T}(\boldsymbol{T}(\boldsymbol{b}))=\boldsymbol{T}(\boldsymbol{b})$ for all vectors \boldsymbol{b}.
4. \star Given a function $f(\boldsymbol{x})=\sin \left(x_{1}\right) e^{x_{2}}$ derive ∇f and plot the vector field

PROBLEM 3

1. Let u, v be sufficiently smooth functions of x. Show step-by-step that

$$
\int_{0}^{\ell}\left[\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} u}{d x^{2}}\right)\right] v d x=\int_{0}^{\ell} E I \frac{d^{2} u}{d x^{2}} \frac{d^{2} v}{d x^{2}} d x+\left.\left[\frac{d}{d x}\left(E I \frac{d^{2} u}{d x^{2}}\right) v\right]\right|_{0} ^{\ell}-\left.\left[E I \frac{d^{2} u}{d x^{2}} \frac{d v}{d x}\right]\right|_{0} ^{\ell}
$$

where E, I are constants.
2. \star Let $\boldsymbol{\sigma}(\boldsymbol{x}) \in \mathbb{R}^{d} \times \mathbb{R}^{d}, \boldsymbol{\sigma}=\boldsymbol{\sigma}^{\top}$, and $\boldsymbol{\eta}(\boldsymbol{x}) \in \mathbb{R}^{d}$ (with both $\boldsymbol{\sigma}$ and $\boldsymbol{\eta}$ being integrable and sufficiently smooth), show that

$$
\int_{\Omega}(\nabla \cdot \boldsymbol{\sigma}) \cdot \boldsymbol{\eta} d V=\int_{\partial \Omega} \boldsymbol{\eta} \cdot \boldsymbol{\sigma} \boldsymbol{n} d S-\int_{\Omega} \boldsymbol{\sigma}: \nabla \boldsymbol{\eta} d V
$$

