HOMEWORK 1

CEE 361-513: Introduction to Finite Element Methods

Due: October 1, 2018

NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked with \star , but are encourage to attempt them anyhow.

PROBLEM 1

Unless otherwise specified, you may assume that $\{\mathbf{e}_i\}_{i=1}^d$ is a set of orthonormal basis associated with a set of cartesian coordinates $\{x_i\}_{i=1}^d$ (cf. the figure on the right). Use indicial notation when appropriate.

- 1. Show that for two vectors a, b the following holds $a \cdot (a \times b) = 0$.
- 2. Let d = 3 and $u(x) = x_1 x_2 x_3 \mathbf{e}_1 + x_1 \mathbf{e}_2 + x_1 \mathbf{e}_3$ compute ∇u and $\nabla \cdot u$.
- 3. Let d = 2, $u(x) = x_1x_2\mathbf{e}_1 + x_1\mathbf{e}_2$, and $v(x) = x_1\mathbf{e}_1 + x_2\mathbf{e}_2$. If $T = T_{ij}\mathbf{e}_i \otimes \mathbf{e}_j = u \otimes v$, what are the values of T_{ij} .

 X_1

 \mathbf{e}_1

- 4. What is the value of **I** : **I**, where **I** is the identity tensor.
- 5. Let u be a vector. Is $T(u) = \exp(u \cdot \mathbf{e}_1)\mathbf{e}_1$ a tensor? Show why or why not.
- 6. Let u be a vector. Is $T(u) = 10 (u \cdot e_2)e_1 + (u \cdot e_1)e_2$ a tensor? Show why or why not.
- 7. \star Show that $(\boldsymbol{u} \otimes \boldsymbol{v}) \cdot (\boldsymbol{A}) = \boldsymbol{u} \otimes \boldsymbol{A}^{\top} \boldsymbol{v}$.
- 8. * Show that $\nabla \cdot (\psi u) = \nabla \psi \cdot u + \psi \nabla \cdot u$ for $u \in \mathbb{R}^d$, $\psi \in \mathbb{R}$.
- 9. \star Show that $\nabla \cdot (\boldsymbol{u} \otimes \boldsymbol{v}) = \nabla \boldsymbol{u} \, \boldsymbol{v} + \boldsymbol{u} \nabla \cdot \boldsymbol{v}$.

PROBLEM 2

To practice with Python do the following operations

- 1. Let $u = 1\mathbf{e}_1 + 2\mathbf{e}_2$. Construct a *unit* vector \boldsymbol{n} such that $\boldsymbol{u} \cdot \boldsymbol{n} = 0$. (Hint: create any vector \boldsymbol{v} that is not linearly dependent with \boldsymbol{u} , then let $\boldsymbol{w} = \boldsymbol{v} \boldsymbol{v} \cdot \boldsymbol{u} / \|\boldsymbol{u}\|^2 \boldsymbol{u}$ and then let $\boldsymbol{n} = \boldsymbol{w} / \|\boldsymbol{w}\|$).
- 2. Let $u = 3\mathbf{e}_1 + 2\mathbf{e}_2 + 4\mathbf{e}_3$, $v = 5\mathbf{e}_1 + 1\mathbf{e}_2 + 4\mathbf{e}_3$. Construct a *unit* vector n that is orthogonal to u, v. (Hint: \times)
- 3. Given two points $x_a = 1\mathbf{e}_1 + 2\mathbf{e}_2$, $x_b = 5\mathbf{e}_1 + 7\mathbf{e}_2$, construct a tensor T that projects vectors along the direction of $\mathbf{a} = x_b x_a$. Remember that a projection must satisfy $T(T(\mathbf{b})) = T(\mathbf{b})$ for all vectors \mathbf{b} .
- 4. \star Given a function $f(x) = sin(x_1)e^{x_2}$ derive ∇f and plot the vector field

PROBLEM 3

1. Let u, v be sufficiently smooth functions of x. Show step-by-step that

$$\int_0^\ell \left[\frac{d^2}{dx^2} \left(E I \frac{d^2 u}{dx^2} \right) \right] v \, dx = \int_0^\ell E I \frac{d^2 u}{dx^2} \frac{d^2 v}{dx^2} \, dx + \left[\frac{d}{dx} \left(E I \frac{d^2 u}{dx^2} \right) v \right] \Big|_0^\ell - \left[E I \frac{d^2 u}{dx^2} \frac{d v}{dx} \right] \Big|_0^\ell$$

where E, I are constants.

2. * Let $\sigma(x) \in \mathbb{R}^d \times \mathbb{R}^d$, $\sigma = \sigma^\top$, and $\eta(x) \in \mathbb{R}^d$ (with both σ and η being integrable and sufficiently smooth), show that

$$\int_{\Omega} (\nabla \cdot \boldsymbol{\sigma}) \cdot \boldsymbol{\eta} dV = \int_{\partial \Omega} \boldsymbol{\eta} \cdot \boldsymbol{\sigma} \boldsymbol{n} dS - \int_{\Omega} \boldsymbol{\sigma} : \nabla \boldsymbol{\eta} dV.$$