
HOMEWORK 2
CEE 361-513: Introduction to Finite Element Methods

Due: October 12, 2018
NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked
with ?, but are encourage to attempt them anyhow.

PROBLEM 1

Write down the expression for the following famous PDEs (for two-dimensional problems) and provide a short
description of what they represent

1. Heat equation
Solution :

∂T

∂t
= α

∂2T

∂x2

where :

T : Temperature

α : thermal diffusivity

It represents how the temperature changes at a point as the heat spreads through space
over time.

2. Euler-Bernoulli equations
Solution :

∂2

∂x2

(
EI
∂2w

∂x2

)
= q(x)

where:

E : Youngs modulus

I : Moment of opportunity

w : vertical displacement of the neutral axis

The equation describes the relationship between the deflection of neutral axis of the
beam and the load applied.

3. Navier-Stokes equations
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Solution :
The following equations together are in generally referred to as the Navier-Stokes
equation:

Continuity :
∂ρ

∂t
+∇ · (ρu) = 0

Momentum :
∂u

∂t
+ (u · ∇)u = ν∆u−

∇P
ρ

+ g

Energy :
∂s

∂t
= −u · ∇s +

Q

T

where:

ρ : density

u : velocity

ν : kinematic viscosity

P : Pressure

g : body acceleration

s : entropy per unit mass

Q : Heat transfered

T : Temperature

The Navier-Stokes equation are the governing equations for fluid flow.

4. Cauchy momentum equations
Solution :

∂ρu

∂t
+∇ · (ρu⊗ u+ σ) = ρg

The equation describes the momentum transport in any continuum. The terms used in the
equation represent the following:

u : flow velocity

σ : stress tensor

g : body forces

5. Shallow water equations
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Solution :
Under the assumption that there are no frictional, viscous and Coriolis forces:

∂ρη

∂t
+
∂ρηu

∂x
+
∂ρηv

∂y
= 0

∂ρηu

∂t
+
∂

∂x

(
ρηu2 +

1

2
ρgη2

)
+
∂ρηuv

∂y
= 0

∂ρηv

∂t
+

∂

∂y

(
ρηv2 +

1

2
ρgη2

)
+
∂ρηuv

∂x
= 0

where:

η : Total fluid column height

u, v : fluid′s horizontal flow velocity averaged across the vertical section

g : acceleration due to gravity

ρ : fluid density

They describe the flow of fluid below a pressure surface.

6. Kirchoff-Love plates’ equation
Solution :

∂4w

∂x4
+
∂4w

∂y4
+ 2

∂4w

∂x2y2
=
q(x, y)

k

where:

q(x, y) = transverse load

k = bending stiffness

The equation governs the bending of thin plates subject to external loads.

7. Transport equation
Solution :

∂ρc

∂t
= ∇ · (Dρ∇c)−∇ · (~vρc) + s

The equation describes the process by which particles, energy etc are tranported in a
system. The terms in the equation represent:

c : Variable of interest

ρ : Density

D : Diffusion Coeffiecient matrix

~v : velocity field with which the quantity of interest is flowing

s : Sources and sinks inthesystem
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PROBLEM 2

1. Classify the the PDEs of Problem 1, namely specify the order and the linearity.
Solution :

(a) Heat equation : Order → 2; Linearity → Linear

(b) Euler-Bernoulli equations : Order → 4; Linearity → Linear

(c) Navier-Stokes equations : Order → 2; Linearity → Non-Linear

(d) Cauchy momentum equations : Order → 2; Linearity → Non-Linear

(e) Shallow water equations : Order → 1; Linearity → Non-Linear

(f) Kirchoff-Love plates’ equation : Order → 4; Linearity → Linear

(g) Transport equation : Order → 2; Linearity → Linear

2. ? Second order quasilinear1 partial differential equations can be categorized as elliptic, parabolic, and
hyperbolic. If we write the second order differential equation as

d∑
i=1

d∑
j=1

ai j
∂2u

∂xixj
+ (lower order derivatives) = 0

then it can be categorized as

Elliptic: if all the eigenvalues of the matrix ai j have the same sign
Parabolic: if one eigenvalue of the matrix ai j is equal to zero and the rest have the same sign
Hyperbolic: if all but one eigenvalues of the matrix ai j have the same sign

(a) Write down an explanation, in terms of characteristics, of what are the main differences between
elliptic, parabolic, and hyperbolic PDEs.

1A quasilinear PDE is any PDE whose higher order derivatives are linear.
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Solution :
The classification of the PDE is related to the characteristics of the PDE. The
characteristics are (d-1) dimensional hypersurfaces in d-dimensional hyperspace. The
prefix hyper- donote spaces of more than 3-dimension, e.g., including time along with
the spatial dimensions. The characteristics, then, denote the path along which the
information propagates in the solution domain. If the PDE has no real characteristic
then there are no preferred path of information propagation. If the PDE has real
characteristics, then information propagates along those characteristics.

Elliptic : No real characteristic curves.
Parabolic : One characteristic curve.
Hyperbolic : Two characteristic curces

This influence the properties of each type of problem.
Elliptic: Since these equations have no characteristic curves, hence no preferred path
of information propagation, the solution at every point depends on the solution of the
every other point.They generally govern the equilibrium problems.

Parabolic : Since they have one real characteristics, they have a preferred path for
information propagation and hence govern propagation problems. They generally govern
time marching problems.

Hyperbolic : They have two real characteristics and hence also govern propagation
problems. They generally govern time marching problems and also allow for shocks to
develop.

(b) For the PDEs of Problem 1, if they are second order and quasilinear, state whether they are elliptic,
parabolic or hyperbolic.
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Solution :

i. Heat Equation :

d = 2

We can write the equation as:
∂T

∂t
− α

∂2T

∂x2
= 0

Hence the coefficients ai j are:

a11 = −α
a22 = a12 = a21 = 0

The matrix created with ai j is

M =

[
−α 0

0 0

]
The eigenvalues for this matrix are:

λ1 = −α
λ2 = 0

Hence the equation is parabolic
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Solution continued :

ii. Navier Stokes Equation : It is quasi-linear as the higher-order derivatives are
linear.

d = 4

Re-writing the momentum equation we get:

∂u

∂t
+ (u · ∇)u− ν∆u+

∇P
ρ
− g = 0

Hence the coefficients ai j are:

a11 = a12 = a13 = −ν
a21 = a22 = a23 = −ν
a31 = a32 = a33 = −ν
a44 = 0 = a42 = a43

The matrix created with ai j is

M =


−ν −ν −ν 0

−ν −ν −ν 0

−ν −ν −ν 0

0 0 0 0


The eigenvalues for this matrix are:

λ1 = 0

λ2 = 0

λ2 = 0

λ4 = −3ν

Hence the equation is parabolic

iii. Cauchy-Momentum equation : It is quasi-linear as the higher order terms are
linear. In the non-steady state case, it is the same as the momentum equation of
the Navier-Stokes equation. Hence, it is parabolic.
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Solution continued :

iv. Transport Equation :

d = 4

Re-writing we get:
∂ρc

∂t
−∇ · (Dρ∇c) +∇ · (~vρc)− s = 0

Since c is generally particles, energy etc, we can assume it is a scalar. Also if
the density and diffusion coefficients are constant then the coefficients ai j are:

a11 = a22 = a33 = −Dρ
a44 = 0

Also all non− diagonal terms are zero

The matrix created with ai j is

M =


−Dρ 0 0 0

0 −Dρ 0 0

0 0 −Dρ 0

0 0 0 0


The eigenvalues for this matrix are:

λ1 = −Dρ
λ2 = −Dρ
λ2 = −Dρ
λ4 = 0

Hence the equation is parabolic
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PROBLEM 3

Consider the system of uniaxial rods as shown below. We have three rods with Youngs’ modulus and cross
sectional areas Ee , Ae and lengths `e for e = 1 . . . 3 . Each element is labeled by e , e = 1 . . . 3. Element 2
and 3 are connected via a rigid link at node 3©, hence the j node of element 2 and 3 share the same global
degree of freedom (see below).

x
A1, E1 A2, E2

A3, E3

`1 `2

`3

P2 P3

Rigid link

Figure 1: The system of uniaxial rods

1 2

3u1 u2

u3u4

1 2
3

4

P2 P3R1

R4

Figure 2: The system of uniaxial rods with nodes n© and elements e labeled.

ef ei f eji j

ui uj
Ae , Ee

`e

Figure 3: The local element view. Each element e is composed of two nodes, node i and j . Their positions
are denoted by xi and xj , xi < xj . The internal forces at node i and j for element e are denoted by f ei,j .

1. Write down the connectivity matrix. Namely, if we let each element be composed of two nodes (cf. Fig 3),
node i and j with position xi , xj such that xi < xj , then identify the global node number corresponding to
the each one of the local nodes. In short, fill in the table below.

Table 1: Connectivity array

element i node j node
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Solution :

Table 2: Connectivity Array

element i node j node
1 1 2
2 2 3
3 4 3

2. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the local degrees of freedom.
Solution :

−f 1i
f 1j

 =

 A1E1
`1

−A1E1`1

−A1E1`1
A1E1
`1

u1i
u1j

 −f 2i
f 2j

 =

 A2E2
`2

−A2E2`2

−A2E2`2
A2E2
`2

u2i
u2j


−f 3i
f 3j

 =

 A3E3
`3

−A3E3`3

−A3E3`3
A3E3
`3

u3i
u3j



3. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the GLOBAL degrees of freedom using the connectivity array.
Solution :

−f 1i
f 1j

 =

 A1E1
`1

−A1E1`1

−A1E1`1
A1E1
`1

u1
u2

 −f 2i
f 2j

 =

 A2E2
`2

−A2E2`2

−A2E2`2
A2E2
`2

u2
u3


−f 3i
f 3j

 =

 A3E3
`3

−A3E3`3

−A3E3`3
A3E3
`3

u4
u3



4. For each node write the equilibrium equations in terms of the external forces Pk , k = 2, 3, the reactions
Rk , k = 1, 4, and the internal forces f ei,j .
Solution :

R1 = −f 1i
P2 = f 1j − f 2i
P3 = f 2j + f 3j

R4 = −f 3i

5. Let ki = AiEi/`i for i = 1 . . . 3. Write down the equilibrium equations in matrix form. Namely, as we
did in class, write the equilibrium equations with a load vector containing reactions and external forces,
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denoted it by {P}, the stiffness matrix denoted by [K], and the vector of displacements {U} such that

[K]{U} = {P}.

Solution :

k1 =
A1E1
`1

k2 =
A2E2
`2

k3 =
A3E3
`3



R1

P2

P3

R4


=



−f 1i

f 1j − f 2i

f 2j + f 3j

−f 3i


=



k1 −k1 0 0

−k1 k1 + k2 −k2 0

0 −k2 k2 + k3 −k3

0 0 −k3 k3





u1

u2

u3

u4



6. Let u1 = a, u4 = b with a, b being given quantities. Apply the boundary conditions to [K], {P}.
Solution :



a

P2

P3

b


=



1 0 0 0

−k1 k1 + k2 −k2 0

0 −k2 k2 + k3 −k3

0 0 0 1





u1

u2

u3

u4



PROBLEM 4

Consider the system of rods of Problem 3. Let E1A1 = 2, E2A2 = 5, E3A3 = 7 and `1 = 5, `2 = 10, `3 = 7

such that x1 = 0, x2 = 5, x3 = 15, x4 = 8.

1. Write in python a function local_to_global_dof that takes as arguments (1) the connectivity array,
(2) the element number, and (3) the local degree of freedom (i or j) and returns the corresponding global
degree of freedom. Namely:

local_to_global_dof( connectivity_array, element_number, local_dof )
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Solution :
"""
Solves the python problem for the homework #2
"""
import numpy as np
import sympy as sp
import numpy.linalg as LA

# Define the material and geometrical properties
E = [2.0, 5.0, 7.0]
A = [1.0, 1.0, 1.0]
l = [5.0, 10.0, 7.0]
# Define the connectivity matrix
connectivity = np.array([[0,1],[1,2], [3,2]])
# Define the coordinates of the nodes
coordinates = [0.0,5.0,15.0,8.0 ]

# Function to return the global degree of freedom from the local degree of freedom
def local_to_global_dof(connectivity_array,element_number,local_dof):

return connectivity_array[element_number,local_dof]

2. Write in python a function element_stiffness that takes as arguments (1) the element Young’s mod-
ulus, (2) the element cross sectional area, (3) the xi coordinate, (4) the xj coordinate, and returns the
element stiffness. Namely:

element_stiffness( youngs_modulus, area , x_i, x_j )

Solution :
# Function to return the element stiffness matrix
def element_stiffness(young_modulus, area, x_i, x_j):

K_e = young_modulus*area/(x_j-x_i)*np.array([[1,-1],[-1,1]])
return K_e

3. Write a loop that assembles the global element stiffness matrix. As aid you can (don’t have to) follow
the following pseudocode.
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# Create arrays of material properties
youngs_moduli ← [ E_1, ...]

areas ← [A_1, ...]

# Create the connectivity array
connectivity_array ← [[global_i, global_j], . . . ]

# Create the coordinates array
coordinates_array ← [x_1,x_2, . . . ]

# Initialize the global stiffness matrix
K ← a zero matrix of size num_dof × num_dof

# Loop over all elements
for each element e

x_{i,j} ← get the crds of the i and j nodes of element e

youngs_e, area_e ← get properties of element e

ke ← element_stiffness( youngs_modulus_e, area_e , x_i, x_j )

for each local dof p

global_p ← local_to_global_dof( connectivity_array, e, p )

for each local dof q

global_q ← local_to_global_dof( connectivity_array, e, q )

K[ global_p, global_q ] += ke[p,q]

Solution :
# Function to return the global degree of freedom from the local degree of freedom
def local_to_global_dof(connectivity_array,element_number,local_dof):

return connectivity[element_number,local_dof]
# Function to return the element stiffness matrix
def element_stiffness(young_modulus, area, x_i, x_j):

K_e = young_modulus*area/(x_j-x_i)*np.array([[1,-1],[-1,1]])
return K_e

# Initialize the global stiffness matrix
KG = np.zeros((num_dof,num_dof))
# Loop over all elements
for e in range(nel):

x_i = coordinates[connectivity[e,0]] # The i coordinate of the element
x_j = coordinates[connectivity[e,1]] # The j coordinate of the element
E_e = E[e] # The young’s modulus of the element
A_e = A[e] # The area of the element
K_e = element_stiffness(E_e,A_e,x_i,x_j) # Obtain the element stiffness matrix
# Assemble the global stiffness matrix
for p in range(ele_dof):

global_p = local_to_global_dof(connectivity,e,p)
for q in range(ele_dof):

global_q = local_to_global_dof(connectivity,e,q)
KG[global_p,global_q] += K_e[p,q]

4. As before assume u1 and u4 are given, namely u1 = 0, u4 = 1. Apply this boundary conditions to [K] and
{P} where P2 = 10, P3 = 2.
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Solution :
# Given load
P = np.zeros(num_dof)
P[1] = 10.0
P[2] = 2.0
# Nodes of known displacement
# Set one if known else 0
bc = [1,0,0,1]
# Dirichlet Boundary conditions
g = np.zeros(num_dof)
g[0] = 0.0
g[3] = 1.0
# Updated force matrix
F = np.zeros(num_dof)
# Initialize a new matrix with KG values
K = KG.copy()
# Updated Stiffness matrix
for b in range(len(bc)):

for num in range(num_dof):
if bc[b] == 1:

if b == num:
K[b,num] = 1.0

else:
K[b,num] = 0.0

# Updated Force matrix
for b in range(len(bc)):

if bc[b] == 1:
F[b] = g[b]

else:
F[b] = P[b]

5. What are the displacements of the nodes ?
Solution :
u = np.dot(LA.inv(K),F.T) # take the inverse and multiply

u2 = 15

u3 = 7

6. What are the reactions R1, R4 ?
Solution :
# Find reactions:
R1 = np.dot(KG[:,0],u)
R4 = np.dot(KG[:,3],u)

R1 = −6

R4 = −6
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