
HOMEWORK 3
CEE 361-513: Introduction to Finite Element Methods

Due: Friday Oct. 13
NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked
with ?, but are encourage to attempt them anyhow.

PROBLEM 1

Consider the truss shown below. For each node z = 1, 2, 3 we have associated coordinates qz and associated
global degrees of freedom uz , where both q and u are vectors.

1. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the local degrees of freedom.
Solution :
For each element the element stiffness matrix could be found as:

Ke =

ke ke

ke ke


where ke is given as:

ke =
AeEe
`e

n⊗ n

n =
qej − qei
|(qej − qei )|

Therefore :

k1 =
A1E1
`1

[
q1j − q1i
|(q1j − q1i )|

⊗
q1j − q1i
|(q1j − q1i )|

]

k2 =
A2E2
`2

[
q2j − q2i
|(q2j − q2i )|

⊗
q2j − q2i
|(q2j − q2i )|

]

k3 =
A3E3
`3

[
q3j − q3i
|(q3j − q3i )|

⊗
q3j − q3i
|(q3j − q3i )|

]

Now we can write the internal forces as a matrix vector operation.−f1i
f1j

 =
 k1 −k1

−k1 k1

u1i
u1j

 −f2i
f2j

 =
 k2 −k2

−k2 k2

u2i
u2j


−f3i

f3j

 =
 k3 −k3

−k3 k3

u3i
u3j



2. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the GLOBAL degrees of freedom using the connectivity array.

1



Solution :
The connectivity array is :

Table 1: Connectivity Array

element i node j node
1 1 2
2 2 3
3 1 3

Internal forces in terms of global degree of freedoms :−f1i
f1j

 =
 k1 −k1

−k1 k1

u1
u2

 −f2i
f2j

 =
 k2 −k2

−k2 k2

u2
u3


−f3i

f3j

 =
 k3 −k3

−k3 k3

u1
u3



3. For each node write the equilibrium equations in terms of the external forces Pk , k = 2, 3, the reactions
R1, and the internal forces f ei,j .
Solution :

R1 = −f1i − f3i

P2 = f1j − f2i

P3 = f2j + f3j

4. Let ki = AiEi/`i for i = 1 . . . 3. Write down the equilibrium equations in matrix form. Namely, as we
did in class, write the equilibrium equations with a load vector containing reactions and external forces,
denoted it by {P}, the stiffness matrix denoted by [K], and the vector of displacements {U} such that

[K]{U} = {P}.

Solution :


R1

P2

P3

 =

−f1i − f3i

f1j − f2i

f2j + f3j

 =

k1 + k3 −k1 −k3

−k1 k1 + k2 −k2

−k3 −k2 k2 + k3



u1

u2

u3


where k1, k2, k3 are the same from question 1.

5. At node 1 we prevent the truss from moving. At node 3 we allow the truss to move along a plane whose
unit normal is m2. Apply the aforementioned conditions to [K], {P}.
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Solution :



0

P2

P3

0


=



I O O 0

−k1 k1 + k2 −k2 0

−k3 −k2 k2 + k3 −m2

0 0 mT
2 0





u1

u2

u3

λ


where I is the identity tensor and O is the zero tensor.

PROBLEM 2

Consider the truss of Problem 1. Let w1 = 7, w2 = 10, h = 7, and A1E1 = 10, A2E2 = 20, A3E3 = 30. Further
let P2 = 10e1 + 5e2,P3 = 2e1 + 5e2.

1. Construct the connectivity array for the truss drawn.

Solution :
"""
Solves the python problem for the homework #4
"""
import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt
import matplotlib as mlab

# Define the connectivity matrix
connectivity = np.array([[0,1],[1,2], [0,2]])

2. Write in python a function local_to_global_dof that takes as arguments (1) the connectivity array,
(2) the element number, and (3) the local degree of freedom (i or j) and returns the corresponding global
degree of freedom. Namely:
local_to_global_dof( connectivity_array, element_number, local_dof )

Solution:

# Function to return the global degree of freedom from the local degree of freedom
def local_to_global_dof(connectivity_array,element_number,local_dof):

return connectivity_array[element_number,local_dof]

3. Write in python a function element_stiffness that takes as arguments (1) the element Young’s mod-
ulus, (2) the element cross sectional area, (3) the qi coordinate, (4) the qj coordinate, and returns the
element stiffness. Namely:

element_stiffness( youngs_modulus, area , q_i, q_j )
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Solution:

# Define the material and geometrical properties
E = [10.0, 20.0, 30.0]
A = [1.0, 1.0, 1.0]
w1 = 7.
w2 = 10.
h = 7.

# Define the coordinates
coordinates = np.array([[0.0,0.0],[w1,h],[w1+w2,0.]])

# Function to return the element stiffness matrix
def element_stiffness(young_modulus, area, q_i, q_j):

n = (q_j-q_i)/(LA.norm(q_j-q_i))
project_tensor = np.outer(n,n)
ke = (young_modulus*area/(LA.norm(q_j-q_i)))*project_tensor
K_e = np.array(([ke, -ke],[-ke, ke]))
return K_e

4. Similarly to the last homework, write a loop that assembles the global element stiffness matrix.
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Solution:

# Total number of elements
nel = 3
# Number of nodes in an element
nen = 2
# Total number of nodes
nnp = 3
# number of degrees of freedom per node
ndf = 1
# total degrees of freedom in an element
ele_dof = nen*ndf
# total degrees of freedom in the system
num_dof = nnp*ndf
# number of spatial dimension
nsd = 2

# Note : Here we are writing the global K in unnested/expanded form
KG = np.zeros((num_dof*nsd,num_dof*nsd))

# Loop over all elements
for e in range(nel):

x_i = coordinates[connectivity[e][0]] # The i coordinate of the element
x_j = coordinates[connectivity[e][1]] # The j coordinate of the element
E_e = E[e] # The young’s modulus of the element
A_e = A[e] # The area of the element
K_e = element_stiffness(E_e,A_e,x_i,x_j) # Obtain the element stiffness matrix

# Assemble the global stiffness matrix
for p in range(ele_dof):

global_p = local_to_global_dof(connectivity,e,p)
for q in range(ele_dof):

global_q = local_to_global_dof(connectivity,e,q)
KG[global_p*nsd:(global_p+1)*nsd,global_q*nsd:(global_q+1)*nsd]\
+= K_e[p,q]

5. As before, at node 1 we prevent the truss from moving hence u1 = 0. At node 3 we allow the truss to
move along a plane whose unit normal is m2 = − sin(π/4)e1 + cos(π/4)e2. Apply the aforementioned
conditions to [K], {P}. (hint: you will have to introduce an additional unknown λ).
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Solution:

ms = np.array([-np.sin(np.pi/4),np.cos(np.pi/4)])
row_new = np.array([np.zeros(nsd),np.zeros(nsd),ms])
row_new = np.resize(row_new,(1,num_dof*nsd)) \\ reshape
column_new = np.append(np.array([np.zeros(nsd),np.zeros(nsd),-ms]),0.)
column_new = np.resize(column_new,(num_dof*nsd+1,1))

K_new = KG.copy()
K_new = np.vstack([K_new, row_new])
K_new = np.hstack([K_new, column_new])

# Nodes of known displacement
# Set one if known else 0
bc = np.zeros(num_dof*nsd+1) # adding 1 element for the lambda

bc = [1,1,0,0,0,0,0]

P = np.zeros(len(bc))
P[2]=10.
P[3]=5.
P[4]=2.
P[5]=5.
P[6]=0.

# Dirichlet Boundary conditions
g = np.zeros(len(bc)) # No prescribed displacement

# Initialize a new matrix with KG values
K = K_new.copy()

# Updated Stiffness matrix
for b in range(len(bc)):

for num in range(len(bc)):
if bc[b] == 1:

if b == num:
K[b,num] = 1.0

else:
K[b,num] = 0.0

#print(K)
# Updated force matrix
F = np.zeros(len(bc))

for b in range(len(bc)):
if bc[b] == 1:

F[b] = g[b]
else:

F[b] = P[b]

6. What are the displacements of the nodes ?
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Solution :
u = LA.solve(K,F.T)

u2 = [8.12, 5.86]

u3 = [4.47, 4.47]

7. What are the reactions R1, λ ?
Solution :
R = np.dot(Knew[:,0],u)

R1 = [−14.94,−7.06]

λ obtained from the u vector

λ = −4.16

8. Plot in python the deformed shape of the truss.

PROBLEM 3 ?

Repeat the steps of Problem 2 for the truss shown below. At nodes 1, 3, 4, 6 the truss is not allowed to move.
At node 5 we have a load P5 = −5e2 and at node 2 we have load P2 = 5e2. Further let AE = 10. Plot in
python the deformed configuration of the truss.
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Solution :
"""
Solves the python problem for the homework #4
"""
import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt
import matplotlib as mlab
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
import random

# Define the connectivity matrix
connectivity = np.array([[0,1],[1,2], [0,4], [3,1],[3,4],[4,5],[1,4]])

Solution:

# Function to return the global degree of freedom from the local degree of freedom
def local_to_global_dof(connectivity_array,element_number,local_dof):

return connectivity_array[element_number][local_dof]

Solution:

# Define the material and geometrical properties
E = [10.,10.,10.,10.,10.,10.,10]
A = [1.,1.,1.,1.,1.,1.,1]

# Define the coordinates
coordinates = np.array([[0.0,0.0,0.0],[.0,.0,4.],[0.,-4.0,0.], [4.,0.,0.],\

[4.,0.,4.],[4.0,-4.0,0.0]])

# Function to return the element stiffness matrix
def element_stiffness(young_modulus, area, q_i, q_j):

n = (q_j-q_i)/(LA.norm(q_j-q_i))
project_tensor = np.outer(n,n)
ke = (young_modulus*area/(LA.norm(q_j-q_i)))*project_tensor
K_e = np.array(([ke, -ke],[-ke, ke]))
return K_e
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Solution:

# Total number of elements
nel = 7
# Number of nodes in an element
nen = 2
# Total number of nodes
nnp = 6
# number of degrees of freedom per node
ndf = 1
# number of space dimension
nsd = 3
# total degrees of freedom in an element
ele_dof = nen*ndf
# total degrees of freedom in the system
num_dof = nnp*ndf

# Note : Here we are writing the global K in unnested/expanded form
KG = np.zeros((num_dof*nsd,num_dof*nsd))

# Loop over all elements
for e in range(nel):

x_i = coordinates[connectivity[e][0]] # The i coordinate of the element
x_j = coordinates[connectivity[e][1]] # The j coordinate of the element
E_e = E[e] # The young’s modulus of the element
A_e = A[e] # The area of the element
K_e = element_stiffness(E_e,A_e,x_i,x_j) # Obtain the element stiffness matrix

# Assemble the global stiffness matrix
for p in range(ele_dof):

global_p = local_to_global_dof(connectivity,e,p)
for q in range(ele_dof):

global_q = local_to_global_dof(connectivity,e,q)
KG[global_p*nsd:(global_p+1)*nsd,global_q*nsd:(global_q+1)*nsd]\
+= K_e[p,q]
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Solution:

# Nodes of known displacement
# Set one if known else 0

bc = [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,1,1,1]

P = np.zeros(len(bc))
P[4]=5.
P[13]=-5.

# Dirichlet Boundary conditions
g = np.zeros(len(bc))

# Initialize a new matrix with KG values
K = K_new.copy()

# Updated Stiffness matrix
for b in range(len(bc)):

for num in range(len(bc)):
if bc[b] == 1:

if b == num:
K[b,num] = 1.0

else:
K[b,num] = 0.0

#print(K)
# Updated force matrix
F = np.zeros(len(bc))

for b in range(len(bc)):
if bc[b] == 1:

F[b] = g[b]
else:

F[b] = P[b]

Solution :
u = LA.solve(K,F.T)

u2 = [−2.0, 7.66,−2.0]
u3 = [−2.0.,−7.66, 2.0]

Solution :
R = np.dot(KG,u)

R1 = [0.0, 0.0, 5.0]

R3 = [0.0,−5.0,−5.0]
R4 = [0.0, 0.0,−5.0]
R6 = [0.0, 5.0, 5.0, ]
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