HOMEWORK 3

CEE 361-513: Introduction to Finite Element Methods

Due: Friday Oct. 13
NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked
with , but are encourage to attempt them anyhow.

PROBLEM 1

Consider the truss shown below. For each node z = 1,2, 3 we have associated coordinates g, and associated
global degrees of freedom wu,, where both q and w are vectors.

1. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the local degrees of freedom.

Solution :
For each element the element stiffness matrix could be found as:

ke ke
K. =
ke ke
where k. is given as:
AE
ke: e 6n®n
Le
q —qf
n= e e
(af — af)
Therefore :
CAE | 4 -4 9 —4q
k= ; T 1y @l 1
v | g —g)l - (g —q))l]|
. Ao @ —q ¢ —q
5 =
b |l —a))l (g — a7l |
. _ AaEs ¢ —aq e
5 =
b |1 —a))l (g} —a?)l |

Now we can write the internal forces as a matrix vector operation.

— f,-l kil —,{71 ’LLIl 7](:/2 ’{72 —kg ’LLI2
fjl —kl kl ’U,J1 fJ2 —kz kz UJ2
7‘f/3 k3 —k3 ’Ll,/3
fj?) *k‘3 k3 'U,J3

2. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the GLOBAL degrees of freedom using the connectivity array.

Solution :
The connectivity array is :

Table 1: Connectivity Array

element | i node j node
1 1 2
2 2 3
3 1 3

Internal forces in terms of global degree of freedoms :

—f} ki —ki| |us —f? ky —ko| |uo
.fjl —ki1 k1 U2 .fj2 —k> ko us
~f? ks —ks| [u:
fj3 —ks ks us

3. For each node write the equilibrium equations in terms of the external forces Py, k = 2, 3, the reactions
R, and the internal forces fj.

Solution :

-1:51:7.](:/17](:/3
P=fl—f?
P3=fJ2+fJ3

4. Let k; = AiEi/¢; for i = 1...3. Write down the equilibrium equations in matrix form. Namely, as we
did in class, write the equilibrium equations with a load vector containing reactions and external forces,
denoted it by {P}, the stiffness matrix denoted by [K], and the vector of displacements {U} such that

[KI{U} ={P}.
Solution :
R, -t =1 ki+ks —k; —k3 Uy
Pl=|fl-f|=| k1 kitks —ko up
P; 7+ —ks —ka kot ks3] [us
where ki, ko, k3 are the same from question 1.

5. At node 1 we prevent the truss from moving. At node 3 we allow the truss to move along a plane whose
unit normal is my. Apply the aforementioned conditions to [K], {P}.

Solution :

[0 [I o (0] 0 7 [uq]
P, —k1 k1 + ko —k> 0 U
P B —k3 —k»> kr+ks —mo| |us
1 0| | 0 0 mJ 0 | L]

where I is the identity tensor and O is the zero tensor.

PROBLEM 2

Consider the truss of Problem 1. Let wy =7, w, =10, h =7, and A;E; = 10, AsE> = 20, A3 E3 = 30. Further
let P> = 10e; + 5e,, P; = 2e; + 5es.

1. Construct the connectivity array for the truss drawn.

Solution :
nnn

Solves the python problem for the homework #4
nnn

import numpy as np

import numpy.linalg as LA

import matplotlib.pyplot as plt

import matplotlib as mlab

Define the connectivity matrix
connectivity = np.array([[0,1],[1,2], [0,2]11)

2. Write in python a function local_to_global_dof that takes as arguments (1) the connectivity array,
(2) the element number, and (3) the local degree of freedom (i or j) and returns the corresponding global
degree of freedom. Namely:
local_to_global_dof(connectivity_array, element_number, local_dof)

Solution:

Function to return the global degree of freedom from the local degree of freedom
def local_to_global_dof (connectivity_array,element_number,local_dof):

return connectivity_array[element_number,local_dof]

3. Write in python a function element_stiffness that takes as arguments (1) the element Young's mod-
ulus, (2) the element cross sectional area, (3) the g; coordinate, (4) the g; coordinate, and returns the
element stiffness. Namely:

element_stiffness(youngs_modulus, area , q_i, q_j)

Solution:

Define the material and geometrical properties

E = [10.0, 20.0, 30.0]
A= [1.0, 1.0, 1.0]

wl =7.

w2 = 10.

h=7.

Define the coordinates
coordinates = np.array([[0.0,0.0], [w1,h], [wi+w2,0.1])

Function to return the element stiffness matrix
def element_stiffness(young_modulus, area, gq_i, q_j):
n = (q_j-q_i)/(LA.norm(q_j-q_1i))
project_tensor = np.outer(n,n)
ke = (young_modulus*area/(LA.norm(q_j-q_1i)))*project_tensor
K_e = np.array(([ke, -kel,[-ke, kel))
return K_e

4. Similarly to the last homework, write a loop that assembles the global element stiffness matrix.

Solution:

Total number of elements

nel = 3

Number of nodes in an element

nen = 2

Total number of nodes

nnp = 3

number of degrees of freedom per node
ndf = 1

total degrees of freedom in an element
ele_dof = nen*ndf

total degrees of freedom in the system
num_dof = nnp*ndf

number of spatial dimension

nsd = 2

Note : Here we are writing the global K in unnested/expanded form
KG = np.zeros((num_dof*nsd,num_dof*nsd))

Loop over all elements
for e in range(nel):
x_i = coordinates[connectivity[e] [0]] # The i coordinate of the element
x_j = coordinates[connectivity[e] [1]] # The j coordinate of the element
E_e = E[e] # The young’s modulus of the element
A_e = Ale] # The area of the element
K_e = element_stiffness(E_e,A_e,x_i,x_j) # Obtain the element stiffness matrix

Assemble the global stiffness matrix
for p in range(ele_dof):
global_p = local_to_global_dof (connectivity,e,p)
for q in range(ele_dof):
global_q = local_to_global_dof (connectivity,e,q)
KG[global_p*nsd: (global_p+1)*nsd,global_g*nsd: (global_g+1)*nsd]\
+= K_elp,aql

5. As before, at node 1 we prevent the truss from moving hence u; = 0. At node 3 we allow the truss to
move along a plane whose unit normal is my = —sin(mw/4)e; + cos(mw/4)e>. Apply the aforementioned
conditions to [K], {P}. (hint: you will have to introduce an additional unknown X).

Solution:

ms = np.array([-np.sin(np.pi/4),np.cos(np.pi/4)])

row_new = np.array([np.zeros(nsd) ,np.zeros(nsd) ,ms])

row_new = np.resize(row_new, (1,num_dof*nsd)) \\ reshape

column_new = np.append(np.array([np.zeros(nsd) ,np.zeros(nsd),-ms]),0.)
column_new = np.resize(column_new, (num_dof*nsd+1,1))

K_new = KG.copy()
K_new = np.vstack([K_new, row_new])
K_new = np.hstack([K_new, column_new])

Nodes of known displacement
Set one if known else 0
bc = np.zeros(num_dof*nsd+1) # adding 1 element for the lambda

bc = [1,1,0,0,0,0,0]

P = np.zeros(len(bc))
P[2]=10.
P[3]=5.
P[4]=2.
P[5]=5.
P[6]1=0.

Dirichlet Boundary conditions
g = np.zeros(len(bc)) # No prescribed displacement

Initialize a new matrix with KG values
K = K_new.copy()

Updated Stiffness matrix
for b in range(len(bc)):
for num in range(len(bc)):
if bclb] ==
if b == num:
Klb,num] = 1.0
else:
K[b,num]

Il

0.0
#print (K)

Updated force matrix

F = np.zeros(len(bc))

for b in range(len(bc)):
if bclb] ==
F[b] = glb]
else:
F[b] = P[b]

6. What are the displacements of the nodes ?

Solution :
u = LA.solve(K,F.T)

u, = [8.12,5.86]
us = [4.47,4.47)

7. What are the reactions R, A 7

Solution :
R = np.dot (Kpew[:,0],u)

Ry = [~14.94, —7.06]

A\ obtained from the u vector

A= —4.16

8. Plot in python the deformed shape of the truss.

Defomed and Undeformed shape

— Undeformed Shape

1ar | — Deformed Shape

12+

10+

y-coordinates

0 5 10 15 20
x-coordinates

PROBLEM 3 «

Repeat the steps of Problem 2 for the truss shown below. At nodes 1,3, 4, 6 the truss is not allowed to move.
At node 5 we have a load Ps = —5e5 and at node 2 we have load P> = 5e,. Further let AE = 10. Plot in
python the deformed configuration of the truss.

Solution :

nnn

Solves the python problem for the homework #4

i

import numpy as np

import numpy.linalg as LA

import matplotlib.pyplot as plt

import matplotlib as mlab

from mpl_toolkits.mplot3d import Axes3D

from matplotlib.collections import LineCollection
import random

Define the connectivity matrix
connectivity = np.array([[0,1],[1,2], [0,4], [3,1]1,[3,4]1,[4,5],[1,411)

Solution:

Function to return the global degree of freedom from the local degree of freedom
def local_to_global_dof (connectivity_array,element_number,local_dof):
return connectivity_array[element_number] [local_dof]

Solution:

Define the material and geometrical properties
E = [10.,10.,10.,10.,10.,10.,10]
A=1T[1.,1.,1.,1.,1.,1.,1]

Define the coordinates
coordinates = np.array([[0.0,0.0,0.0],[.0,.0,4.]1,[0.,-4.0,0.], [4.,0.,0.]1,\
[4.,0.,4.1,[4.0,-4.0,0.011)

Function to return the element stiffness matrix
def element_stiffness(young_modulus, area, q_i, q_j):
n = (q_j-q_i)/(LA.norm(q_j-q_1i))
project_tensor = np.outer(n,n)
ke = (young_modulus*area/(LA.norm(q_j-q_1i)))*project_tensor
K_e = np.array(([ke, -ke],[-ke, kel]))
return K_e

Solution:

Total number of elements

nel =7

Number of nodes in an element

nen = 2

Total number of nodes

nnp = 6

number of degrees of freedom per node
ndf =1

number of space dimension

nsd = 3

total degrees of freedom in an element
ele_dof = nen*ndf

total degrees of freedom in the system
num_dof = nnp*ndf

Note : Here we are writing the global K in unnested/expanded form
KG = np.zeros((num_dof*nsd,num_dof*nsd))

Loop over all elements
for e in range(nel):
x_1i = coordinates[connectivity[e] [0]] # The i coordinate of the element
x_j = coordinates[connectivity[e] [1]] # The j coordinate of the element
E_e = E[e] # The young’s modulus of the element
A_e = Ale] # The area of the element
K_e = element_stiffness(E_e,A_e,x_i,x_j) # Obtain the element stiffness matrix

Assemble the global stiffness matrix
for p in range(ele_dof):
global_p = local_to_global_dof (connectivity,e,p)
for q in range(ele_dof):
global_q = local_to_global_dof (connectivity,e,q)
KG[global_p#*nsd: (global_p+1)*nsd,global_g*nsd: (global_g+1)*nsd]\
+= K_elp,ql

Solution:

Nodes of known displacement
Set one if known else O

bc = [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,1,1,1]

P = np.zeros(len(bc))
P[4]=5.
P[13]=-5.

Dirichlet Boundary conditions
g = np.zeros(len(bc))

Initialize a new matrix with KG values
K = K_new.copy()

Updated Stiffness matrix
for b in range(len(bc)):
for num in range(len(bc)):

if bc[b] == 1:
if b == num:
K[b,num] = 1.0
else:
K[b,num] = 0.0

#print (K)
Updated force matrix
F = np.zeros(len(bc))

for b in range(len(bc)):

if bcl[b] == 1:
F[b] = glb]
else:
F[b] = P[b]
Solution :

u = LA.solve(K,F.T)

up = [~2.0,7.66, —2.0]
us = [~2.0., —7.66, 2.0]

Solution :
R = np.dot (KG,u)

R; =[0.0,0.0,5.0]
R =[0.0, 5.0, =5.0]
R4 =1[0.0,0.0, —5.0]
R =[0.0,5.0,5.0,]

10

$31RUIPI00D-EX

— Undeformed Shape

Defomed and Undeformed shape — Deformed Shape

s 08 -2 -1 0 x1-codrdinates

11

