
HOMEWORK 4
CEE 361-513: Introduction to Finite Element Methods

Due: Friday Nov 9 @ Midnight
NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked
with ?, but are encourage to attempt them anyhow.

PROBLEM 1

Consider the frame shown below. Foreach node z = 1, 2, 3 we have associated coordinates qz and associated
global degrees of freedom uz and θz , where both q and u are vectors while θz are scalar rotations. At node 3
the frame is free to rotate but is constrained to move along a plane whose normal is given by ms .

A1, E1, I1

A2, E2, I2

w

h

P2 P3

mS
x2

x1

e2

e1

1

2

w1 w2

h

1

2 3

P1

P2 P3

M1

M2 M3

x2

x1

e2

e1

Figure 1: The system of uniaxial rods

1

1. For each node write the equilibrium equations in terms of the external forces Pk , k = 1, 2, 3 and moments
Mk , k = 1, 2, 3, and the internal forces f ei,j and moments me

i,j .

2. Write the general expression of internal forces (and moments) as the matrix vector operation of the local
element stiffness and the local degrees of freedom.

3. For each element write the internal forces (and moments) as the matrix vector operation of the local
element stiffness and the GLOBAL degrees of freedom using the connectivity array.

4. Using Ke
fw,k

e
fθ, . . . (cf. lecture notes), write down the equilibrium equations in matrix form.

5. At node 1 we prevent the frame from moving (i.e. all displacements and rotations are zero). At node 3
we allow the truss to move along a plane whose unit normal is mS as well as to rotate freely. Apply the
aforementioned conditions to the matrix form of the previous step.

PROBLEM 2

Consider the frame of Problem 1. Let w = 10, h = 10, and A1 = E1 = I1 = 1, A2 = E2 = I2 = 2. Further let
P2 = 10e1 +5e2 and M2 = 3, as well as P3 = 2e1 +5e2 (all other external loads are zero). Using as reference
the starter code below (cf. “fill me here” comments for missing items) do the following:

1. Write a function for the local stiffness matrix of a frame element (combined axial and bending), following
the template below
def local_stiffness_frame(elts,crds,e) .

2. Assemble the global stiffness matrix and load vector.

3. Knowing that w1 = 0 and θ1 = 0 as well as mS = −cos(π/4)e1 + sin(π/4)e2, apply the appropriate
boundary conditions.

4. Solve for the displacements and rotations.

5. Plot the deformed shape of the frame.

elements = {}
elements[] = {’A’: , ’E’: , ’I’: , 0: , 1: } #fill me here

def local_stiffness_truss(elts,crds,e):
A, E = (elts[e][’A’],elts[e][’E’])
Compute the director vector between the nodes
n = crds[elts[e][1]] - crds[elts[e][0]]
Compute the lenght of the element
L = la.norm(n)
Normalize the director vector
n /= L
Compute the stiffness tensor
k = A*E/L*np.outer(n,n)
The individual tensor entries of the local element stiff
ke = np.array([[k,-k],[-k,k]])
Resize it
space_dim = n.size # the space dimensions
n_nodes = 2 # the number of nodes
n_dof = space_dim*n_nodes # the number of element degrees of freedom
ke = ke.reshape(n_dof, n_dof)
return ke

2

Assemble the local stiffness matrix for a frame element
def local_stiffness_beam(elts,crds,e):
Get element properties
A, E, I = (elts[e][’A’],elts[e][’E’],elts[e][’I’])
Compute the director vector between the nodes
n = crds[elts[e][1]] - crds[elts[e][0]]
Compute the lenght of the element
L = la.norm(n)
Normalize the director vector
n /= L
Define the rotation operation
R = np.array([[0,-1],[1,0]])
Compute normal
s = # fill me here
Compute the coefficients
Kfw = # fill me here
kmt = # fill me here
khmt = # fill me here
kmw = # fill me here
kft = # fill me here
The elt stiffness
space_dim = n.size # the space dimensions
n_nodes = 2 # the number of nodes
n_dof = space_dim*n_nodes + n_nodes # the number of element degrees of freedom
Ke = np.zeros((n_dof,n_dof))
Add contributions
The Diagonal blocks
Ke[0:2,0:2] = Ke[3:5,3:5] = Kfw
Ke[2,2] = Ke[5,5] = kmt
The upper triangular portion
Ke[0:2,2] = Ke[0:2,5] = kft
Ke[0:2,3:5] = Ke[0:2,3:5] = -Kfw
Ke[2,3:5] = -kmw
Ke[2,5] = khmt
Ke[3:5,5] = -kft
Copy upper triangular to lower triangular (it’s a symmetric matrix)
lower_indeces = np.tril_indices(n_dof,-1)
Ke[lower_indeces] = 0
Ke += np.triu(Ke,1).T
return Ke

3

	
	
	

