
HOMEWORK 6
CEE 361-513: Introduction to Finite Element Methods

Due: Monday Nov. 26 @ Midnight
NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked
with ?, but are encourage to attempt them anyhow.

PROBLEM 1:

Read the following sections from the textbook (Hughe’s) and summarize the content of each section

1. 1.1-1.9

2. ? 1.10

3. 1.12-1.15

4. 3.6-3.9 (stopping atop of page 148 before the discussion of shape function subroutines)
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PROBLEM 2:Learning FEniCS

This problem is to familiarize yourself with FEniCS, a very useful, high-level, and open-source finite element
library.

1. Visit the FEniCS webpage (https://fenicsproject.org) and go to the Download tab at the top. If you
are using Mac or Linux we suggest you use the Anaconda prebuilt distribution. If you are using Windows
we suggest you use Docker distribution. If you have any issues along the installation please contact us for
help.

2. We are going to solve the simplest possible problem. The problem reads: find u : [−1, 1]→ R such that

d2u

dx2
= f ∀x ∈ (−1, 1)

and

u(−1) = g,
du

dx
(1) = t.

We would like to manufacture boundary conditions (t and g) and source terms (f ) such that the solution
of the above boundary problem is exactly

ue(x) =
1

2
cos(2π x) + exp(x) + x3.

To do so we simply set

g = ue(−1), t =
due

dx
(1), f (x) =

d2ue

dx2
.

With the above we can then derive the weak form of the problem statement to be: find u ∈ S, with S
being the set of trial functions, such that

a(u, v) = F (v) ∀v ∈ V

where V is the set of test functions and

a(u, v) =

∫ 1

−1

du

dx

dv

dx
dx, F (v) = −

∫ 1

−1
f vdx + t v(1).

All of the above is implemented for you in the attached code named fenics_truss.py. Your job for this
part of the problem is to go through the code and make sure it runs and it makes sense. Once it does
plot the analytical solution ue and the finite element approximation uh.

Here all I am going to do is to break down what we are doing.

First and foremost we use sympy to create the analytical solution ue and obtain the expressions for
g, t, f (x). We also cast the variable solution, which is a sympy function, into a python lambda function
for later plotting.

1x = sp.symbols(’x[0]’)
2solution = 1./2* sp.cos( 2.*sp.pi*x ) + sp.exp(x) + x**3
3ue_code = sp.ccode(solution ). replace(’M_PI’,’pi’)
4t_code = sp.ccode( sp.diff(solution ,x ,1)). replace(’M_PI’,’pi’)
5f_code = sp.ccode( sp.diff(solution ,x ,2)). replace(’M_PI’,’pi’)
6solution = sp.lambdify(x,solution)

Next we create the mesh (aka the subdivision) of our domain by first creating a mesh of a domain [0, 1]

then scaling the domain by 2 and shifting it to the left by 1.
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1# Start by creating a unit interval mesh
2# subdivided in ndiv elements
3ndiv = 10
4mesh = UnitIntervalMesh(ndiv)
5
6# We are going to shift the above mesh
7# such that it dicretizes the interval [-1,1]
8mesh.coordinates ()[:] *= 2
9mesh.coordinates ()[:] -= 1

We now create the subspace of piecewise linear polynomials as we saw in class (the triangle-looking
functions also shown in the second plot of the problem on Lagrange polynomials).

1# Create the function space of
2poly_order = 1
3V = FunctionSpace(mesh , ’Lagrange ’, poly_order)

Next we identify the parts of the boundary of our domain (in 1 − D these are two points, Γ = {x =

−1, x = 1}) that are Dirichlet ΓD and the ones that are Neumann ΓN .

1# Define the dirichlet boundary
2class dirichlet_boundary(SubDomain ):
3def inside(self , x, on_boundary ):
4return on_boundary and abs( x + 1. ) < DOLFIN_EPS
5
6# Define the neumann boundary
7class neumann_boundary(SubDomain ):
8def inside(self , x, on_boundary ):
9return on_boundary and abs( x - 1. ) < DOLFIN_EPS

We next mark the boundaries of our domain

1boundaries = MeshFunction("size_t", mesh , mesh.topology ().dim() -1)
2dirichlet_boundary (). mark(boundaries ,1)
3neumann_boundary (). mark(boundaries ,2)
4ds = ds(subdomain_data=boundaries)

and we define the Dirichlet boundary conditions

1bc = DirichletBC(V, ue , dirichlet_boundary ())

Now we are ready to define the trial function and the test function, the expression for the source term,
and the Neumann boundary value

1u = TrialFunction(V)
2v = TestFunction(V)

1f = Expression(f_code ,pi=np.pi, degree =5)
2t = Expression(t_code ,pi=np.pi, degree =5)

We now define the bilinear form and the forcing functional

1a = dot(u.dx(0), v.dx (0))* dx
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1F = -f*v*dx + t*v*ds(2)

and we finally solve the proble

1uh = Function(V)
2solve(a == F, uh, bc)

3. With the above code construct boundary conditions and source terms such that the analytical solution is
of the form

ue(x) =
1

2
sin(3π x) x + exp(x) + x2.

Then compute the L2 norm of the error for a mesh with N = 21, 22, 23, 24, . . . , 28 elements (here you
will have to write a for loop) and plot the the L2 norm of the error against the average element size
h = 2/21, 2/22, . . . , 2/28 on a log-log plot (use matplotlib loglog plot).

4. What is the rate of convergence of the solution? Namely, we see that for a mesh size h the L2 norm of
the error is

‖eh‖L2 = ‖uh − ue‖ ≈ αhk

where α is a constant independent of h. Our goal is to determine k .

To do so choose a fixed h (for example h = 2/27) then look at

‖eh‖L2
‖eh/2‖L2

≈
αhk

α (h/2)k
= 2k ⇒ k = log2

‖eh‖L2
‖eh/2‖L2

.

5. What is the rate of convergence if instead of linear polynomials we use quadratic or cubic polynomials?
Namely, repeat the above steps by changing the poly_order variable in

1poly_order = 1
2V = FunctionSpace(mesh , ’Lagrange ’, poly_order)

Note, that when we change the polynomial order we are simply replacing the “triangle” functions with the
higher order Lagrange polynomials of the previous problem constructed over the interior of each element.
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