
HOMEWORK 7
CEE 361-513: Introduction to Finite Element Methods

Due: Friday Dec. 1 @ Midnight
NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked
with ?, but are encourage to attempt them anyhow.

Introduction
The objective of this homework is to reconnect theoretical results derived in class with an actual implementation
of Finite Element Methods. Particularly in this homework assignment we will be looking at quadrilateral elements
in two dimension.

PROBLEM 1:

In quadrilateral_element/ and utils/ there are several files containing important functions to assist the
construction of a quadrilateral element. The quadrilateral_element object is implemented in the file named
quadrilateral_element/quadrilateral_element.py.

1. A quadrilateral element in quadrilateral_element/quadrilateral_element.py is constructed by
passing the element index, the coordinates of the entire mesh, the connectivity of the entire mesh,
and the polynomial order of the interpolating functions. Look at line 39 of quadrilateral_element.py
for more details. If we are interested in studying only one element we can then construct a mesh with
one element, and construct the element object as illustrated in the starter code problem_1.py and also
shown below. Fill in the arguments of my_element.

1ax.set_zlim ([ -0.5 ,1])
2plt.title(r’Base␣function␣of␣index␣i␣=␣%i’%base_index)
3plt.savefig(’../../ figures/base_function_%i.pdf’%base_index)
4plt.close(’all’)
5
6def part_4(element ):
7
8# Create a list of sample points in the parametric domain
9xs = np.linspace (-1,1,100)
10X = np.meshgrid( xs , xs )
11X = np.c_[ X[0]. flatten(), X[1]. flatten () ]
12
13# Map the points in the physical domain before
14# interpolating the edge nodes quadratically
15Y = X*0
16for i,x in enumerate(X):

Solution :

1element_index = 0
2my_element = quadrilateral_element.element( element_index ,\

2. One of the methods (the functions of the element object), as you can imagine, is the function that takes
a base index i ∈ {0, . . . , poly_order} and a coordinate in the parametric domain and returns the base
function at that point. This particular method is implemented at line 144 of quadrilateral_element.py
and is named get_base_function_val. For this part of the problem we would like you to plot all the
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basis functions for degree 2 polynomial basis function. You should get a figure similar to the one shown
in Fig. ?? for all the basis functions . A starter code is provided in the function part_2 in the file
problem_1.py.
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Solution :

Figure 1: Plot of a base function with index 0 and 1

Figure 2: Plot of a base function with index 2 and 3

Figure 3: Plot of a base function with index 4 and 5
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Solution :

Figure 4: Plot of a base function with index 6 and 7

Figure 5: Plot of a base function with index 8

3. Read and summarize §3.3 Isoparametric Elements of the textbook.
Solution :
Refer to the textbook.

4. The quadrilateral_element object possesses a map from the parametric domain to the physical domain
x̂e(ξ) which is implemented in the method get_map on line 99. The map is based upon isoparametric
mapping, namely

x̂e(ξ) = φ̂i(ξ)xei

where xei denotes the positions in real space of the i th degree of freedom (see figure below). When
the element object is first created the class assumes by default that only the vertex nodes are passed
to the object (for example, for polynomials degree p = 2 only the vertex x0,x2, x6, x8 are passed
to the object) and the remainder of the nodes are interpolated linearly. To see how this is done visit
interpolate_interior_nodes on line 68 of quadrilateral_element.py.

If we would like to use curved boundaries by interpolating all the nodes with the basis functions we must pass
the coordinates xei to the element object. Luckily this is implemented in the method set_interior_nodes_coordinates
on line 89 of quadrilateral_element.py.
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Your job is to create an array of coordinates of dimension (p + 1)d × d , where p = 2 is the polynomial
order and d = 2 is the space dimension, containing the following coordinates. Then you must pass this
array to set_interior_nodes_coordinates. Refer to the starter function part_4.py in problem_1.py
for guidance.

Node x1 x2

x0 -2.00 -2.00
x1 0.00 -1.00
x2 2.00 -2.00
x3 -1.80 0.00
x4 0.20 0.00
x5 2.20 0.00
x6 -2.00 2.00
x7 0.00 1.00
x8 2.00 2.00

Again, using the same starter function as reference, plot the shape of the element in the physical space
before and after you interpolate quadratically the element edges.
Solution :

1# Get the map of point x onto the physical domain
2Y[i] = element.get_map(x) #<- fill here

1# corresponding to the degrees of freedom
2Xe = np.array ([( -2.0 , -2.0) ,(0.0 , -1.0),(2.0 ,-2.0) ,\
3(-1.8, 0.0) ,(0.2 , 0.0) ,(2.2 , 0.0) ,( -2.0 ,2.0) ,(0.0 ,1.0) ,(2.0 ,2.0)])
4# <- fill here */ )
5# Set the value of all nodes
6my_element.set_interior_nodes_coordinates(Xe) # <- fill here

1Y[i] = my_element.get_map(x) #<- fill here

Figure 6: Plot of before (orange) and after (black) quadratic interpolation

5. You recall from class that we mentioned that the Jacobian ĵe(ξ) = det(∇ξx̂
e(ξ)) is a measure of change

of a differential area element in the parametric domain to the physical domain. Namely
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ĵe =
dΩe

dΩ
.

As the Jacobian is a fundamental quantity in performing a lot of calculations in finite elements, the compu-
tation of the Jacobian is implemented in the method get_dmap on line 114 of quadrilateral_element.py.
The value of the Jacobian can vary spatially. Plot the value of the Jacobian for the curved edge element
from the previous exercise. Can you interpret what you are seeing?
Solution :

1# Get the map of point x onto the physical domain
2Y[i] = my_element.get_map(x) #<- fill here
3
4# Get the jacobian
5J[i] = my_element.get_dmap(x, jacobian=True) #<- fill here

Figure 7: Plot of the jacobian

6. As we saw in class the area of an element is given by

Ae =

∫
ωe
dΩ =

∫
Ω̂

ĵ(ξ)dΩ̂ =

∫ 1

−1

∫ 1

−1

ĵe(ξ)dξ1dξ2

and the above integral can be approximated using numerical quadrature, namely

Ae =

∫ 1

−1

∫ 1

−1

ĵe(ξ)dξ1dξ2 ≈
∑

(ξ̃Q,ωq)∈Q

je(ξ̃Q)ωQ.

Luckily for us the quadrature ruleQ (the set of tuples of quadrature points ξ̃Q and quadrature weights ωQ )
has been implemented in the method called get_quadrature on line 185 of quadrilateral_element.py.
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With the above and the starter code in function part_6.py compute the area for the element with curved
edges.
Solution :

1q_points , q_weights = element.get_quadrature () # <- fill here

1# Get the jacobian at the quadrature point
2jacobian = element.get_dmap(q_points[i], jacobian=True) #<- fill here
3
4# Add the contribution
5A += jacobian*q_weights[i]#<- fill here

The value of area of the curved element is 10.67.

PROBLEM 2:

Recall from class the structure of a finite element code as shown below. In the file problem_2.py we effectively
implemented the flow chart below for the differential problem of : find u ∈ Ω = [−w,w ]× [w,w ], w = 2 such
that, for f (x) = sin(x1), we have

∆u = f ∀x ∈ Ω

and
u = 0 ∀x ∈ Γ

(namely all of our boundaries are Dirichlet boundaries).

1. For each cloud of the cloud in the flow chart identify which lines of code and in which file we are performing
the operation. You will likely have to go through all the code provided.
Solution :

(a) Create Problem Data : problem_2.py: lines 30-37

(b) Create Connectivity : problem_2.py: lines 39-44

(c) Allocate global arrays : problem_2.py: lines 60-62

(d) Loop over each element: assembly.py: lines 56-73

(e) Initialize k=0, f e = 0 : poisson.py: lines 35-39

(f) Loop through quadrature points : poisson.py; lines 45-71

(g) Add contributions to ke and f e : poisson.py: lines 60-71

(h) Assemble ke →K and f e → F : problem_2.py: line 71; assembly.py: lines 26-45

(i) Solve System: problem_2.py: lines 75-85; apply_bc.py: lines 6-19

2. ? The differential problem specific part of the code is found in element_operations. Now suppose we
are interested in solving a similar problem but in addition to the diffusion term (∆u) we are adding a
reaction term. Namely we are interested in solving: find u ∈ Ω = [−w,w ]× [w,w ], w = 2 such that, for
f (x) = sin(x1), k = 0.1, we have

∆u + ku = f ∀x ∈ Ω

and
u = 0 ∀x ∈ Γ
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(namely all of our boundaries are Dirichlet boundaries).

Perform the following steps:

(a) Derive the weak form for the above problem
Solution :
The set of trial and test functions are:

S = {u|u ∈ H1(Ω), u = 0 ∀x ∈ Γ}

V = {v |v ∈ H1(Ω), v = 0 ∀x ∈ Γ}

The residual is:
R = ∆u + ku − f = 0

Multiplying by the test function and integrating over the domain gives:∫
Ω

∆uvdΩ +

∫
Ω

kuvdΩ−
∫

Ω

f vdΩ = 0

intΩ∇ · (∇uv)dΩ−
∫

Ω

∇u · ∇vdΩ +

∫
Ω

kuvdΩ−
∫

Ω

f vdΩ = 0∫
Γ

v(∇u) · ndΓ−
∫

Ω

∇u · ∇vdΩ +

∫
Ω

kuvdΩ−
∫

Ω

f vdΩ = 0∫
Ω

∇u · ∇vdΩ−
∫

Ω

kuvdΩ = −
∫

Ω

f vdΩ

Therefore:
a(u, v) =

∫
Ω

∇u · ∇vdΩ−
∫

Ω

kuvdΩ

F (v) = −
∫

Ω

f vdΩ

(b) Create a new file in element_operations named diffusion_reaction.py. Here you can effec-
tively copy poisson.py.
Solution :
Create the file as instructed.

(c) Create a class inside the above file named diffusion_reaction that implements your derived weak
form. Here the changes will be minimal and very similar to what you did for homework 6.
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Solution :
We mainly modify the stiffness term:

1# Get the value of the gradient of all basis at the quadrature point
2grad_phi = []
3phi = []
4k_val = 0.1 # Value of the coefficient k in the problem
5for k in range(num_dofs ):
6# Get the base function gradients
7grad_phi.append( element.get_base_function_grad( k, gauss_points[q] ) )
8phi.append(element.get_base_function_val( k, gauss_points[q] ) )
9# Loop over all degree of freedoms
10for i in range(num_dofs ):
11for j in range(num_dofs ):
12
13# Add the contribution to the stiffness matrix
14ke[i,j] += np.dot( grad_phi[i] , grad_phi[j] )* jacobian *\
15gauss_weights[q]-\
16k_val*phi[i]*phi[j]* jacobian*gauss_weights[q]

9


	
	

