
HOMEWORK 8
CEE 361-513: Introduction to Finite Element Methods

Due: Monday Dec. 17
NB: Students taking CEE 513 must complete all problems. All other students will not be graded for problems marked
with ?, but are encourage to attempt them anyhow.

PROBLEM 1:

Read and summarize App. 3.1 Triangular and Tetrahedral Elements

PROBLEM 2:

In triangular_element/ and utils/ there are several files containing important functions to assist the
construction of a triangular element. The triangular_element object is implemented in the file named
triangular_element/triangular_element.py.

1. The triangular_element object possesses a map from the parametric domain to the physical domain
x̂e(ξ) which is implemented in the method get_map on line 111. The map is based upon isoparametric
mapping, namely

x̂e(ξ) = φ̂i(ξ)xei

where xei denotes the positions in real space of the i th degree of freedom (see figure below). When
the element object is first created the class assumes by default that only the vertex nodes are passed
to the object (for example, for polynomials degree p = 2 only the vertex x0,x1, x2 are passed to the
object) and the remainder of the nodes should be interpolated linearly. Recalling from class the meaning
of barycentric coordinates, using barycentric coordinates only, implement the linear interpolation of edge
and interior nodes in the method interpolate_interior_nodes on line 78 of triangular_element.py.
(hint: to do so you you should use self.basis.dof_nodes as well as crds_vertex.)

2. A triangular element in triangular_element/triangular_element.py is constructed by passing the
element index, the coordinates of the element’s vertices, and the polynomial order of the interpolating
functions. Look at line 39 of triangular_element.py for more details. If we are interested in studying
only one element we can then construct a mesh with one element, and construct the element object as
illustrated in the starter code problem_2.py and also shown below. Fill in the arguments of my_element.

1# Create the mesh with a single element
2coordinates = np.array ([(-w,0), (w,0), (0,w)])
3
4# Connectivity
5connectivity = np.array ([[0 ,1 ,2]])
6
7# Construct an element
8element_index = 0
9element_vertices = coordinates[connectivity[element_index]]
10my_element = triangular_element.element() # <-- fill here

3. One of the methods (the functions of the element object) is the function that takes a base index i ∈
{0, . . . , num of dof} and a coordinate in the parametric domain and returns the base function at that
point. This particular method is implemented at line 151 of triangular_element.py and is named
get_base_function_val. For this part of the problem we would like you to plot all the basis functions
for degree 2 polynomial basis function. You should get a figure similar to the one shown in Fig. 1 for all
the basis functions. A starter code is provided in the function part_2 in the file problem_2.py.

1

1

0.0
0.5

1.0

2

0.0

0.5

1.0
0.5

0.0

0.5

1.0

Base function of index i = 0

Figure 1: Sample plot of a base function

0.5 1

0.5

1

ξ1

ξ2

x0

x3

x1

x4

x5

x2

x1

x2

x̂e(ξ)

4. If we would like to use curved boundaries by interpolating all the nodes with the basis functions we must pass
the coordinates xei to the element object. Luckily this is implemented in the method set_interior_nodes_coordinates
on line 100 of triangular_element.py.

Your job is to create an array of coordinates of dimension (p + 1)(p + 2)/2 × d , where p = 2 is the
polynomial order and d = 2 is the space dimension, containing the following coordinates. Then you
must pass this array to set_interior_nodes_coordinates. Refer to the starter function part_4.py in
problem_2.py for guidance.

Node x1 x2

x0 2.0 0.0
x1 0.0 2.0
x1 -2.0 0.0
x3 0.5 1.0
x2 -1.0 1.5
x5 0.0 0.4

Again, using the same starter function as reference, plot the shape of the element in the physical space
before and after you interpolate quadratically the element edges.

2

5. You recall from class that we mentioned that the Jacobian ĵe(ξ) = det(∇ξx̂
e(ξ)) is a measure of change

of a differential area element in the parametric domain to the physical domain. Namely

ĵe =
dΩe

dΩ̂
.

As the Jacobian is a fundamental quantity in performing a lot of calculations in finite elements, the compu-
tation of the Jacobian is implemented in the method get_dmap on line 114 of triangular_element.py.
The value of the Jacobian can vary spatially. Plot the value of the Jacobian for the curved edge element
from the previous exercise. Can you interpret what you are seeing?

6. As we saw in class the area of an element is given by

Ae =

∫
ωe
dΩ =

∫
Ω̂

ĵ(ξ)dΩ̂ =

∫ 1

0

∫ 1−ξ2

0

ĵe(ξ)dξ1dξ2

and the above integral can be approximated using numerical quadrature, namely

Ae =

∫ 1

0

∫ 1−ξ2

0

ĵe(ξ)dξ1dξ2 ≈
∑

(ξ̃Q,ωq)∈Q

je(ξ̃Q)ωQ.

Luckily for us the quadrature rule Q (the set of tuples of quadrature points ξ̃Q and quadrature weights ωQ
) has been implemented in the method called get_quadrature on line 195 of triangular_element.py.
With the above and the starter code in function part_6.py compute the area for the element with curved
edges.

7. Suppose now that you want to integrate the function g(x) = sin(x1) exp(x2) over the curved element from
the previous parts of the problem. Unfortunately in triangular_element/simplex_quadrature.py only
quadrature rules of degree precision up to order 3 were hard coded. Your job is to implement the 6-point
quadrature formula of degree precision 4 as found in App. 3.1 of the textbook and use it to compute
the integral of g(x) over the curved domain (note that the weights in Table 3.I.1 should be multiplied by
1/2). Namely, if we let Ωe denote the curved domain you want to compute∫

Ωe

g(x)dΩ =

∫
Ω̂

g(xe(ξ)) je(ξ)dΩ̂ ≈
nQ∑
i=1

g(x̂e(ξ̃i))je(ξ̃i)ωi

where ξ̃i and ωi are the the quadrature points and weights you just implemented.

3

	
	

