MID-TERM PRACTICE QUESTIONS

CEE 361-513: Introduction to Finite Element Methods
Thurday Oct. 19
This are some example questions to sharpen your skills for the mid-term. In addition you should review the homework, precepts, and lecture notes, as well as Chapter 1.1-1.9 and 1.12-1.14 of the Hughes book.

PROBLEM 1

1. Let $d=2$. $u=x_{1} x_{2}+c$ be a scalar where c is any arbitrary constant. Find ∇u and $\nabla \cdot(\nabla u)$.

Solution :
∇u $=\frac{d u}{d x_{i}} \mathbf{e}_{i}$ $=x_{2} \mathbf{e}_{1}+x_{1} \mathbf{e}_{2}$
$\nabla \cdot(\nabla u)$ $=\frac{d(\nabla u)}{d x_{i}} \cdot \mathbf{e}_{i}$ $=0$

2. Let $d=3$. $\boldsymbol{u}=x_{1} x_{3} \mathbf{e}_{1}+x_{2} x_{3} \mathbf{e}_{2}$. Find the gradient of \boldsymbol{u}.

$$
\begin{aligned}
& \text { Solution : } \\
& \qquad \begin{aligned}
\nabla \boldsymbol{u} & =\frac{d \boldsymbol{u}}{d x_{i}} \otimes \mathbf{e}_{i} \\
& =x_{3} \mathbf{e}_{1} \otimes \mathbf{e}_{1}+x_{3} \mathbf{e}_{2} \otimes \mathbf{e}_{2}+x_{1} \mathbf{e}_{1} \otimes \mathbf{e}_{3}+x_{2} \mathbf{e}_{2} \otimes \mathbf{e}_{3}
\end{aligned}
\end{aligned}
$$

3. Is $\boldsymbol{T}(\boldsymbol{u})=\sin \left(\boldsymbol{u} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{2}+\cos \left(\boldsymbol{u} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{1}$ a tensor?
```
Solution :
```

$$
\begin{aligned}
\boldsymbol{T}(\alpha \boldsymbol{u}) & =\sin \left(\alpha \boldsymbol{u} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{2}+\cos \left(\alpha \boldsymbol{u} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{1} \\
& \neq \alpha\left(\sin \left(\boldsymbol{u} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{2}+\cos \left(\boldsymbol{u} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{1}\right)
\end{aligned}
$$

Hence not a tensor.
4. Let $\boldsymbol{x}_{a}=2 \mathbf{e}_{1}+5 \mathbf{e}_{2}$ and $\boldsymbol{x}_{b}=7 \mathbf{e}_{1}+8 \mathbf{e}_{2}$. Find the projection tensor that projects vectors along the direction $\boldsymbol{a}=\boldsymbol{x}_{b}-\boldsymbol{x}_{a}$.

```
Solution :
```

$$
\begin{aligned}
\boldsymbol{a} & =\boldsymbol{x}_{b}-\boldsymbol{x}_{a} \\
& =5 \mathbf{e}_{1}+3 \mathbf{e}_{2}
\end{aligned}
$$

Unit vector along \boldsymbol{a}

$$
\begin{aligned}
\boldsymbol{n} & =\frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} \\
& =\frac{1}{\sqrt{34}}\left(5 \mathbf{e}_{1}+3 \mathbf{e}_{2}\right)
\end{aligned}
$$

Projection tensor:

$$
\begin{aligned}
\boldsymbol{T} & =\boldsymbol{n} \otimes \boldsymbol{n} \\
& =\frac{1}{34}\left(25 \mathbf{e}_{1} \otimes \mathbf{e}_{1}+15 \mathbf{e}_{1} \otimes \mathbf{e}_{2}+15 \mathbf{e}_{2} \otimes \mathbf{e}_{1}+9 \mathbf{e}_{2} \otimes \mathbf{e}_{2}\right)
\end{aligned}
$$

5. Let $\left\{\mathbf{e}_{i}\right\}_{i=1}^{3}$ be a set of orthonormal basis. Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{v}$ be three vectors such that $\boldsymbol{b}=\boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{a} \boldsymbol{a} /\|\boldsymbol{a}\|^{2}$. Show that \boldsymbol{a} and \boldsymbol{b} are linearly independent (i.e. $\alpha \boldsymbol{b}+\boldsymbol{a}=0 \Rightarrow \alpha=0$).
```
Solution :
Let }\mp@subsup{\alpha}{1}{}\boldsymbol{b}+\mp@subsup{\alpha}{2}{}\boldsymbol{a}=0\mathrm{ for two arbitrary values of }\mp@subsup{\alpha}{1}{}\mathrm{ and }\mp@subsup{\alpha}{2}{}\mathrm{ . If they are linearly
dependent.Taking the dot product with a
```

$$
\begin{aligned}
& \boldsymbol{a} \cdot\left(\alpha_{1} \boldsymbol{b}+\alpha_{2} \boldsymbol{a}\right)=0 \\
& \boldsymbol{a} \cdot \alpha_{1}\left(\boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{a} \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|^{2}}\right)+\alpha_{2} \boldsymbol{a} \cdot \boldsymbol{a}=0 \\
& \alpha_{2}\|\boldsymbol{a}\|^{2}=0
\end{aligned}
$$

Since this is true for any arbitrary α_{2}.

$$
\alpha_{2}=0
$$

Substituing in the original assumption leads to:

$$
\alpha_{1}=0
$$

Hence, \boldsymbol{b} and \boldsymbol{a} are linearly independent.
6. Let $\operatorname{tr}(\boldsymbol{A}):=\boldsymbol{A}: \mathbf{1}$ be the trace of a tensor \boldsymbol{A}. If $f=x_{2} x_{3}+x_{1} x_{3}+x_{1} x_{2}$, in which $\left\{\mathbf{e}_{i}\right\}_{i=1}^{3}$ is a set of orthonormal basis associated with the cartesian coordinates $\left\{x_{i}\right\}_{i=1}^{3}$. Show that $\nabla \cdot(\nabla f)=\operatorname{tr}(\nabla(\nabla(f)))$.

$$
\begin{aligned}
& \text { Solution : } \\
& \qquad \begin{aligned}
& \nabla \cdot(\nabla f)=\nabla \cdot\left(\left(x_{3}+x_{2}\right) \mathbf{e}_{1}+\left(x_{3}+x_{1}\right) \mathbf{e}_{2}+\left(x_{2}+x_{1}\right) \mathbf{e}_{3}\right) \\
&=0 \\
& \qquad \begin{aligned}
\operatorname{tr}(\nabla(\nabla(f))) & =\operatorname{tr}\left(\nabla\left(\left(x_{3}+x_{2}\right) \mathbf{e}_{1}+\left(x_{3}+x_{1}\right) \mathbf{e}_{2}+\left(x_{2}+x_{1}\right) \mathbf{e}_{3}\right)\right) \\
& =\operatorname{tr}\left(\mathbf{e}_{2} \otimes \mathbf{e}_{1}+\mathbf{e}_{3} \otimes \mathbf{e}_{1}+\mathbf{e}_{1} \otimes \mathbf{e}_{2}+\mathbf{e}_{3} \otimes \mathbf{e}_{2}+\mathbf{e}_{1} \times \mathbf{e}_{3}+\mathbf{e}_{2} \otimes \mathbf{e}_{3}\right) \\
& =\left(\mathbf{e}_{2} \otimes \mathbf{e}_{1}+\mathbf{e}_{3} \otimes \mathbf{e}_{1}+\mathbf{e}_{1} \otimes \mathbf{e}_{2}+\mathbf{e}_{3} \otimes \mathbf{e}_{2}+\mathbf{e}_{1} \otimes \mathbf{e}_{3}+\mathbf{e}_{2} \otimes \mathbf{e}_{3}\right): \mathbf{1} \\
& =0
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Hence they are equal.

PROBLEM 2

Consider the truss shown below. Foreach node we have associated coordinates \boldsymbol{q}_{z} and associated global degrees of freedom \boldsymbol{u}_{z}, where both \boldsymbol{q} and \boldsymbol{u} are vectors. All elements have the same E, A.

Figure 1: The system of uniaxial rods

1. Label each node and element and create a connectivity array.

Solution :

element	i node	j node
1	1	2
2	2	3
3	3	4
4	4	5
5	5	6
6	6	1
7	2	6
8	2	5
9	3	6
10	3	5

Table 1: Connectivity Array
2. For each element write the internal forces as the matrix vector operation of the local element stiffness and the local degrees of freedom.
Solution :
For each element the element stiffness matrix could be found as:

$$
\boldsymbol{K}_{\mathrm{e}}=\left[\begin{array}{cc}
\boldsymbol{k}_{\mathrm{e}} & \boldsymbol{k}_{\mathrm{e}} \\
\boldsymbol{k}_{\mathrm{e}} & \boldsymbol{k}_{\mathrm{e}}
\end{array}\right]
$$

where $\boldsymbol{k}_{\mathrm{e}}$ is given as:

$$
\begin{aligned}
\boldsymbol{k}_{\mathrm{e}} & =\frac{A_{e} E_{e}}{\ell_{e}} \boldsymbol{n} \otimes \boldsymbol{n} \\
\boldsymbol{n} & =\frac{\boldsymbol{q}_{j}^{\mathrm{e}}-\boldsymbol{q}_{i}^{\mathrm{e}}}{\left|\left(\boldsymbol{q}_{j}^{\mathrm{e}}-\boldsymbol{q}_{i}^{\mathrm{e}}\right)\right|}
\end{aligned}
$$

The internal forces as a matrix vector operation could be written as:

$$
\left[\begin{array}{c}
-\boldsymbol{f}_{i}^{e} \\
\boldsymbol{f}_{j}^{e}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{k}_{e} & -\boldsymbol{k}_{e} \\
-\boldsymbol{k}_{e} & \boldsymbol{k}_{e}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}_{i}^{e} \\
\boldsymbol{u}_{j}^{e}
\end{array}\right]
$$

3. For each element write the internal forces as the matrix vector operation of the local element stiffness and the GLOBAL degrees of freedom using the connectivity array.

Solution :

Internal forces in terms of global degree of freedoms for the first two elements:

$$
\left[\begin{array}{c}
-\boldsymbol{f}_{i}^{1} \\
\boldsymbol{f}_{j}^{1}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{k}_{1} & -\boldsymbol{k}_{1} \\
-\boldsymbol{k}_{1} & \boldsymbol{k}_{1}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}_{1} \\
\boldsymbol{u}_{2}
\end{array}\right] \quad\left[\begin{array}{c}
-\boldsymbol{f}_{i}^{2} \\
\boldsymbol{f}_{j}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{k}_{2} & -\boldsymbol{k}_{2} \\
-\boldsymbol{k}_{2} & \boldsymbol{k}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}_{2} \\
\boldsymbol{u}_{3}
\end{array}\right]
$$

Similarly others could be written using the connectivity array.
4. For each node write the equilibrium equations in terms of the external forces, the reactions, and the internal forces.

Solution :

$$
\begin{aligned}
\boldsymbol{R}_{1} & =-\boldsymbol{f}_{i}^{1}+\boldsymbol{f}_{j}^{6} \\
\boldsymbol{P}_{2} & =\boldsymbol{f}_{j}^{1}-\boldsymbol{f}_{i}^{2}-\boldsymbol{f}_{i}^{7}-\boldsymbol{f}_{i}^{8} \\
\boldsymbol{P}_{3} & =\boldsymbol{f}_{j}^{2}-\boldsymbol{f}_{i}^{3}-\boldsymbol{f}_{i}^{9}-\boldsymbol{f}_{i}^{10} \\
\boldsymbol{P}_{4} & =\boldsymbol{f}_{j}^{3}-\boldsymbol{f}_{i}^{4} \\
\boldsymbol{P}_{5} & =-\boldsymbol{f}_{i}^{5}+\boldsymbol{f}_{j}^{4}+\boldsymbol{f}_{j}^{10}+\boldsymbol{f}_{j}^{8} \\
\boldsymbol{P}_{6} & =\boldsymbol{f}_{j}^{5}-\boldsymbol{f}_{i}^{6}+\boldsymbol{f}_{j}^{7}+\boldsymbol{f}_{j}^{9}
\end{aligned}
$$

5. Write down the equilibrium equations in matrix form. Namely, as we did in class, write the equilibrium equations with a load vector containing reactions and external forces, denoted it by $\{P\}$, the stiffness matrix denoted by $[K]$, and the vector of displacements $\{U\}$ such that

$$
[K]\{U\}=\{P\} .
$$

Solution :

$$
\left[\begin{array}{c}
\boldsymbol{R}_{1} \\
\boldsymbol{P}_{2} \\
\boldsymbol{P}_{3} \\
\boldsymbol{P}_{4} \\
\boldsymbol{P}_{5} \\
\boldsymbol{P}_{6}
\end{array}\right]=\left[\begin{array}{cccccc}
\boldsymbol{k}_{1}+\boldsymbol{k}_{6} & -\boldsymbol{k}_{1} & & & -\boldsymbol{k}_{6} \\
-\boldsymbol{k}_{1} & \boldsymbol{k}_{1}+\boldsymbol{k}_{2}+ & -\boldsymbol{k}_{2} & & -\boldsymbol{k}_{8} & -\boldsymbol{k}_{7} \\
& \boldsymbol{k}_{7}+\boldsymbol{k}_{8} & & & & \\
& -\boldsymbol{k}_{2} & \boldsymbol{k}_{2}+\boldsymbol{k}_{3}+ & -\boldsymbol{k}_{3} & -\boldsymbol{k}_{10} & -\boldsymbol{k}_{9} \\
& & \boldsymbol{k}_{9}+\boldsymbol{k}_{10} & \boldsymbol{k}_{3}+\boldsymbol{k}_{4} & -\boldsymbol{k}_{4} & \\
& & -\boldsymbol{k}_{3} & \boldsymbol{k}_{3} \\
& -\boldsymbol{k}_{8} & -\boldsymbol{k}_{10} & -\boldsymbol{k}_{4} & \boldsymbol{k}_{4}+\boldsymbol{k}_{5}+ & -\boldsymbol{k}_{5} \\
& & & & \boldsymbol{k}_{8}+\boldsymbol{k}_{10} & \\
& -\boldsymbol{k}_{7} & -\boldsymbol{k}_{9} & & -\boldsymbol{k}_{5} & \boldsymbol{k}_{5}+\boldsymbol{k}_{6}+ \\
& & & & \boldsymbol{k}_{7}+\boldsymbol{k}_{9}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}_{1} \\
\boldsymbol{u}_{2} \\
\boldsymbol{u}_{3} \\
\boldsymbol{u}_{4} \\
\boldsymbol{u}_{5} \\
\boldsymbol{u}_{6}
\end{array}\right]
$$

6. At the leftmost node we prevent the truss from moving. At the rightmost node we allow the truss to move along a plane whose unit normal is \boldsymbol{m}_{2}. Apply the aforementioned conditions to $[K],\{P\}$.

7. What is the reaction force at the leftmost node?

$$
\begin{aligned}
& \text { Solution : } \\
& \text { All the dispalcements could be found after solving for the system. Once we have the } \\
& \text { dispalcements, we can find the reactions. Reaction force at the left-most node. } \\
& \qquad \boldsymbol{R}_{1}=\left[\begin{array}{llllll}
\boldsymbol{k}_{1}+\boldsymbol{k}_{6} & -\boldsymbol{k}_{1} & \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{O} & -\boldsymbol{k}_{6} \\
0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{u}_{1} \\
\boldsymbol{u}_{2} \\
\boldsymbol{u}_{3} \\
\boldsymbol{u}_{4} \\
\boldsymbol{u}_{5} \\
\boldsymbol{u}_{6} \\
\lambda
\end{array}\right]
\end{aligned}
$$

8. What is the reaction force at the rightmost nodes?
```
Solution :
All the dispalcements could be found after solving for the system. Once we have the
dispalcements, we can find the reactions. Reaction force at the right-most node.
```

$$
\boldsymbol{R}_{4}=\left[\begin{array}{llllll}
\boldsymbol{O} & \boldsymbol{O} & -\boldsymbol{k}_{3} & \boldsymbol{k}_{3}+\boldsymbol{k}_{4} & -\boldsymbol{k}_{4} & \boldsymbol{O} \\
-\boldsymbol{m}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}_{1} \\
\boldsymbol{u}_{2} \\
\boldsymbol{u}_{3} \\
\boldsymbol{u}_{4} \\
\boldsymbol{u}_{5} \\
\boldsymbol{u}_{6} \\
\lambda
\end{array}\right]
$$

PROBLEM 3

Consider the frame shown below. At the lower- and left-most node we constrain the frame from moving in all directions and we prevent it from rotating. At the upper- and left-most node we have a hinge (hence no moment can be transferred). At the lowest- and right-most support the frame is allowed to move along a plane define by the normal \boldsymbol{m}_{S}. All elements have the same E, I, A.

1. Label each element and node and write the connectivity array.

Solution :

element	i node	j node
1	1	2
2	2	3
3	3	4
4	4	5
5	5	6
6	2	5

Table 2: Connectivity Array
2. For each node write the equilibrium equations in terms of the external force \boldsymbol{P} and moment M, and the internal forces $\boldsymbol{f}_{i, j}^{e}$ and moments $m_{i, j}^{e}$.
Solution :

$$
\begin{aligned}
\boldsymbol{V}_{1} & =-\boldsymbol{f}_{i}^{n 1}+\boldsymbol{f}_{i}^{s 1} \\
M_{1} & =-m_{i}^{1} \\
\boldsymbol{V}_{2} & =\boldsymbol{f}_{j}^{n 1}-\boldsymbol{f}_{j}^{s 1}-\boldsymbol{f}_{i}^{n 2}+\boldsymbol{f}_{i}^{s 2}-\boldsymbol{f}_{i}^{n 6}+\boldsymbol{f}_{i}^{s 6} \\
M_{2} & =-m_{i}^{2}+m_{j}^{1}-m_{i}^{6} \\
\boldsymbol{V}_{3} & =\boldsymbol{f}_{j}^{n 2}-\boldsymbol{f}_{j}^{s 2}-\boldsymbol{f}_{i}^{n 3}+\boldsymbol{f}_{i}^{s 3} \\
M_{3} & =m_{j}^{2}-m_{i}^{3} \\
\boldsymbol{V}_{4} & =\boldsymbol{f}_{j}^{n 3}-\boldsymbol{f}_{j}^{s 3}-\boldsymbol{f}_{i}^{n 4}+\boldsymbol{f}_{i}^{s 4} \\
M_{4} & =m_{j}^{3}-m_{i}^{4} \\
\boldsymbol{V}_{5} & =\boldsymbol{f}_{j}^{n 4}-\boldsymbol{f}_{j}^{s 4}+\boldsymbol{f}_{j}^{n 6}-\boldsymbol{f}_{j}^{s 6}-\boldsymbol{f}_{i}^{n 5}+\boldsymbol{f}_{i}^{s 5} \\
M_{5} & =-m_{i}^{5}+m_{j}^{4}+m_{j}^{6} \\
\boldsymbol{V}_{6} & =\boldsymbol{f}_{j}^{n 5}-\boldsymbol{f}_{i}^{s 5} \\
M_{1} & =m_{j}^{5}
\end{aligned}
$$

3. Write the general expression of internal forces (and moments) as the matrix vector operation of the local element stiffness and the local degrees of freedom.
```
Solution :
```

Internal forces as matrix vector operation of the local element stiffness and local
degrees of freedom.

$$
\left[\begin{array}{c}
\boldsymbol{V}_{i} \\
M_{i} \\
\boldsymbol{V}_{j} \\
M_{j}
\end{array}\right]=\left[\begin{array}{cccc}
{\left[\boldsymbol{K}_{f w}\right]} & {\left[k_{f \theta}\right]} & {\left[-\boldsymbol{K}_{f w}\right]} & {\left[k_{f \theta}\right]} \\
{\left[\boldsymbol{k}_{\boldsymbol{m}}\right]^{T}} & {\left[k_{m \theta}\right]} & {\left[-\boldsymbol{k}_{m w}\right]^{T}} & {\left[\hat{k}_{m \theta}\right]} \\
{\left[-\boldsymbol{K}_{f w}\right]} & {\left[-\boldsymbol{k}_{f \theta}\right]} & {\left[\boldsymbol{K}_{f w}\right]} & {\left[-\boldsymbol{k}_{f \theta}\right]} \\
{\left[\boldsymbol{k}_{m w}\right]^{T}} & {\left[\hat{k}_{m \theta}\right]} & {\left[-\boldsymbol{k}_{m w}\right]^{T}} & {\left[k_{m \theta}\right]}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{w}_{i} \\
\theta_{i} \\
\boldsymbol{w}_{j} \\
\theta_{j}
\end{array}\right]
$$

where:

$$
\begin{aligned}
\boldsymbol{K}_{f \boldsymbol{w}} & =\frac{A_{e} E_{e}}{\ell_{e}} \boldsymbol{n}^{e} \otimes \boldsymbol{n}^{e}+\frac{12 E_{e} l_{e}}{\ell_{e}^{3}} s^{e} \otimes \boldsymbol{s}^{e} \\
k_{m \theta} & =\frac{4 E_{e} l_{e}}{\ell_{e}} \\
\hat{k}_{m \theta} & =\frac{2 E_{e} l_{e}}{\ell_{e}} \\
\boldsymbol{k}_{m \boldsymbol{w}} & =\boldsymbol{k}_{\boldsymbol{f} \theta}=\frac{6 E_{e} l_{e}}{\ell_{e}^{2}} s^{e}
\end{aligned}
$$

For each element e
4. For each element write the internal forces (and moments) as the matrix vector operation of the local element stiffness and the GLOBAL degrees of freedom using the connectivity array.
Solution :
For element 1

$$
\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
M_{1} \\
\boldsymbol{V}_{2} \\
M_{2}
\end{array}\right]=\left[\begin{array}{cccc}
{\left[\boldsymbol{K}_{f \boldsymbol{w}}^{1}\right]} & {\left[\boldsymbol{k}_{\boldsymbol{f} \theta}^{1}\right]} & {\left[-\boldsymbol{K}_{\boldsymbol{f} w}^{1}\right]} & {\left[\boldsymbol{k}_{\boldsymbol{f} \theta}^{1}\right]} \\
{\left[\boldsymbol{k}_{m \boldsymbol{w}}^{1}\right]^{T}} & {\left[\mathrm{k}_{m \theta}^{1}\right]} & {\left[-\boldsymbol{k}_{m \boldsymbol{w}}^{1}\right]^{T}} & {\left[\hat{k}_{m \theta}^{1}\right]} \\
{\left[-\boldsymbol{K}_{\boldsymbol{f} w}^{1}\right]} & {\left[-\boldsymbol{k}_{\boldsymbol{f} \theta}^{1}\right]} & {\left[\boldsymbol{K}_{\boldsymbol{f} w}^{1}\right]} & {\left[-\boldsymbol{k}_{\boldsymbol{f} \theta}^{1}\right]} \\
{\left[\boldsymbol{k}_{m \boldsymbol{w}}^{1}\right]^{T}} & {\left[\hat{k}_{m \theta}^{1}\right]} & {\left[-\boldsymbol{k}_{m \boldsymbol{w}}^{1}\right]^{T}} & {\left[k_{m \theta}^{1}\right]}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{w}_{1} \\
\theta_{1} \\
\boldsymbol{w}_{2} \\
\theta_{2}
\end{array}\right]
$$

For element 2

$$
\left[\begin{array}{c}
\boldsymbol{V}_{2} \\
M_{2} \\
\boldsymbol{V}_{3} \\
M_{3}
\end{array}\right]=\left[\begin{array}{cccc}
{\left[\boldsymbol{K}_{f w}^{2}\right]} & {\left[\boldsymbol{k}_{f \theta}^{2}\right]} & {\left[-\boldsymbol{K}_{\boldsymbol{f} w}^{2}\right]} & {\left[\boldsymbol{k}_{\boldsymbol{f} \theta}^{2}\right]} \\
{\left[\boldsymbol{k}_{m w}^{2}\right]^{T}} & {\left[k_{m \theta}^{2}\right]} & {\left[-\boldsymbol{k}_{m w}^{2}\right]^{T}} & {\left[\hat{k}_{m \theta}^{2}\right]} \\
{\left[-\boldsymbol{K}_{\boldsymbol{f} w}^{2}\right]} & {\left[-\boldsymbol{k}_{\boldsymbol{f} \theta}^{2}\right]} & {\left[\boldsymbol{K}_{f w}^{2}\right]} & {\left[-\boldsymbol{k}_{\boldsymbol{f} \theta}^{2}\right]} \\
{\left[\boldsymbol{k}_{m w}^{2}\right]^{T}} & {\left[\hat{k}_{m \theta}^{2}\right]} & {\left[-\boldsymbol{k}_{m w}^{2}\right]^{T}} & {\left[k_{m \theta}^{2}\right]}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{w}_{2} \\
\theta_{2} \\
\boldsymbol{w}_{3} \\
\theta_{3}
\end{array}\right]
$$

Ans similarly other elements could be written down.
5. Using $\boldsymbol{K}_{\boldsymbol{f} \boldsymbol{w}}^{e}, \boldsymbol{k}_{\boldsymbol{f} \theta}^{e}, \ldots$, write down the equilibrium equations in matrix form.

Solution :

The matrix is incomplete. But this should get you started and you can fill the rest of the terms.
6. At the lower- and left-most node we constrain the frame from moving in all directions and we prevent it from rotating. At the upper- and left-most node we have a hinge (hence no moment can be transferred). At the lowest- and right-most support the frame is allowed to move along a plane define by the normal \boldsymbol{m}_{S}. Apply the aforementioned conditions to the matrix form of the previous step.

Solution :

We need to add an extra row and column to accomodate for the lagrange multiplier and update the boundary conditions.

$\left.\begin{array}{l}0 \\ 0\end{array}\right]$		I 0^{T}	0 1	O 0^{T}	0 0	O 0 0	0]	w_{1}
V_{2}		$-\boldsymbol{K}_{f w}^{1}$	$-\boldsymbol{k}_{f \theta}^{1}$	$\boldsymbol{K}_{f \boldsymbol{w}}^{1}+\boldsymbol{K}_{f \boldsymbol{w}}^{2}+\boldsymbol{K}_{f \boldsymbol{w}}^{6}$	$-\boldsymbol{k}_{f \theta}^{1}+\boldsymbol{k}_{f \theta}^{2}+\boldsymbol{k}_{f \theta}^{6}$	$-\boldsymbol{K}_{\text {f }}^{2} \boldsymbol{w}$	$k_{f \theta}^{2}$	\ldots	\ldots	\boldsymbol{w}_{2}
M_{2}		$\left[\boldsymbol{k}_{m \boldsymbol{w}}^{1}\right]^{\top}$	$\hat{k}^{1}{ }_{m \theta}$	$\left[-\boldsymbol{k}_{m w}^{1}\right]^{T}+\left[\boldsymbol{k}_{m w}^{2}\right]^{T}+\left[\boldsymbol{k}_{m \boldsymbol{w}}^{6}\right]^{\top}$	$k_{m \theta}^{1}+k_{m \theta}^{2}+k_{m \theta}^{6}$	$-\left[\boldsymbol{k}_{m w}^{2}\right]^{T}$	$\hat{k}^{2}{ }_{m \theta}$	\ldots	\ldots	θ_{2}
V_{3}		O	0	$-\boldsymbol{K}_{\text {f }}^{2} \boldsymbol{w}$	$-k_{f \theta}^{2}$	$K_{f w}^{2}$	$-k_{f \theta}^{2}$	\ldots	\ldots	w_{3}
M_{3}		0^{T}	0	$\left[\boldsymbol{k}_{\text {mww }}^{2}\right]^{\top}$	$\hat{k}^{2}{ }_{m \theta}$	$\left[-\boldsymbol{k}_{m w}^{2}\right]^{T}$	$k_{m \theta}^{2}$	\ldots	\ldots	θ_{3}
V_{4}	$=$	\ldots	...	\ldots	\ldots	\ldots	\ldots	\boldsymbol{w}_{4}
M_{4}		\ldots	θ_{4}							
V_{5}		\ldots		w_{5}						
M_{5}		\ldots	\ldots	\ldots	...	\ldots	\ldots			θ_{5}
V_{6}		\cdots		\ldots	\ldots	\ldots		...	$-m_{s}$	w_{5}
M_{6}					,					θ_{5}
0				\ldots				$\boldsymbol{m}_{\text {s }}^{t}$		λ

Again the matrix is incomplete, but this should get you started.
7. How would you determine the reactions?

Solution :

Once we have found the dispalcement by solving the system updated with the boundary conditions, we can obtain the reactions by matrix-vector operation between the original global stiffness matrix and the now known degrees of freedom. So for example, if we are looking for reaction \boldsymbol{R}_{1} and M_{1}, the matrix-vector operation would be:

$$
\left[\begin{array}{l}
\boldsymbol{R}_{1} \\
M_{1}
\end{array}\right]=\left[\begin{array}{ccccccc}
\boldsymbol{K}_{\boldsymbol{f} \boldsymbol{w}}^{1} & \boldsymbol{k}_{\boldsymbol{f} \theta}^{1} & -\boldsymbol{K}_{\boldsymbol{f} \boldsymbol{w}}^{1} & \boldsymbol{k}_{\boldsymbol{f} \theta}^{1} & \boldsymbol{O} & \mathbf{0} & \ldots \\
{\left[\boldsymbol{k}_{m \boldsymbol{w}}^{1}\right]^{T}} & k_{m \theta}^{1} & -\left[\boldsymbol{k}_{m \boldsymbol{w}}^{1}\right]^{T} & \hat{k^{1}}{ }_{m \theta} & \mathbf{0}^{T} & 0 & \ldots \\
\hline
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{w}_{1} \\
\theta_{1} \\
\boldsymbol{w}_{2} \\
\theta_{2} \\
\boldsymbol{w}_{3} \\
\theta_{3} \\
\boldsymbol{w}_{4} \\
\theta_{4} \\
\boldsymbol{w}_{5} \\
\theta_{5} \\
\boldsymbol{w}_{5} \\
\theta_{5} \\
\lambda
\end{array}\right]
$$

PROBLEM 4

Consider the following strong form: find $u:(0,1) \rightarrow \mathbb{R}$ such that

$$
-\frac{d^{2} u}{d x^{2}}+u+x^{3}=0, \quad \forall x \in(0,1)
$$

For each of the following boundary conditions, state the set of trial and test functions and derive the weak form.
i. $u(0)=g_{0}, u(1)=g_{1}$

Solution :
The set of trial functions \mathcal{S} :

$$
\mathcal{S}=\left\{u \mid u \in \text { Smooth }, u(0)=g_{0}, u(1)=g_{1}\right\}
$$

The set of test functions \mathcal{V} :

$$
\mathcal{V}=\{w \mid w \in \operatorname{Smooth}, w(0)=0, w(1)=0\}
$$

Multiplying both the sides by the weight w and integrating:

$$
\begin{aligned}
& -\int_{0}^{1} \frac{d^{2} u}{d x^{2}} w d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0 \\
& -\left.\frac{d u}{d x} w\right|_{0} ^{1}+\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0 \\
& \int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0
\end{aligned}
$$

ii. $\frac{d u}{d x}(0)=h_{0}, u(1)=g_{1}$

Solution :
The set of trial functions \mathcal{S} :

$$
\mathcal{S}=\left\{u \mid u \in \text { Smooth, } u(1)=g_{1}\right\}
$$

The set of test functions \mathcal{V} :

$$
\mathcal{V}=\{w \mid w \in \text { Smooth }, w(1)=0\}
$$

Multiplying both the sides by the weight w and integrating:

$$
\begin{aligned}
& -\int_{0}^{1} \frac{d^{2} u}{d x^{2}} w d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0 \\
& -\left.\frac{d u}{d x} w\right|_{0} ^{1}+\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0 \\
& h_{0} w(0)+\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0
\end{aligned}
$$

iii. $u(0)=g_{0}, \frac{d u}{d x}(1)=h_{1}$

Solution :
The set of trial functions \mathcal{S} :

$$
\mathcal{S}=\left\{u \mid u \in \text { Smooth }, u(0)=g_{0}\right\}
$$

The set of test functions \mathcal{V} :

$$
\mathcal{V}=\{w \mid w \in \text { Smooth }, w(0)=0\}
$$

Multiplying both the sides by the weight w and integrating:

$$
\begin{aligned}
& -\int_{0}^{1} \frac{d^{2} u}{d x^{2}} w d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0 \\
& -\left.\frac{d u}{d x} w\right|_{0} ^{1}+\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0 \\
& -h_{1} w(1)+\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x=0
\end{aligned}
$$

PROBLEM 5

For the above BVP derive the matrix form and, assuming linear shape functions as shown in class,
i. Derive the element stiffness matrix

Solution :
For an element, the linear shape functions are given by:

$$
\begin{aligned}
\phi_{1} & =\frac{\xi_{2}-\xi}{\xi_{2}-\xi_{1}} \\
\phi_{2} & =\frac{\xi-\xi_{1}}{\xi_{2}-\xi_{1}}
\end{aligned}
$$

For us $\xi_{1}=0$ and $\xi_{2}=1$. The stiffness term for the above BVP is given by:

$$
K_{i j}=\left(\int_{0}^{1} \frac{d \phi_{i}}{d \xi} \frac{d \phi_{j}}{d \xi}\left(\frac{d \hat{x}}{d \xi}\right)^{-1} d \xi+\int_{0}^{1} \phi_{i} \phi_{j} \frac{d \hat{x}}{d \xi} d \xi\right)
$$

Substituting the value of ϕ_{i} and ϕ_{j} we obtain:

$$
K^{e}=\left[\begin{array}{cc}
\frac{1}{h^{e}}+\frac{h^{e}}{3} & \frac{-1}{h^{e}}+\frac{h^{e}}{6} \\
\frac{-1}{h^{e}}+\frac{h^{e}}{6} & \frac{1}{h^{e}}+\frac{h^{e}}{3}
\end{array}\right]
$$

where h^{e} is the length of the element.
ii. Assuming we discretize $(0,1)$ into two elements, with the element stiffness matrix derived above, assemble the global stiffness matrix.
Solution :
Uisng the element stiffness matrix from above we have:

$$
\begin{aligned}
& K^{1}=\left[\begin{array}{cc}
\frac{13}{6} & \frac{-23}{12} \\
\frac{-23}{12} & \frac{13}{6}
\end{array}\right] \\
& K^{2}=\left[\begin{array}{ll}
\frac{13}{6} & \frac{-23}{12} \\
\frac{-23}{12} & \frac{13}{6}
\end{array}\right]
\end{aligned}
$$

The Global stiffness matrix:

$$
K=\left[\begin{array}{ccc}
\frac{13}{6} & \frac{-23}{12} & 0 \\
\frac{-23}{12} & \frac{13}{3} & \frac{-23}{12} \\
0 & \frac{-23}{12} & \frac{13}{6}
\end{array}\right]
$$

PROBLEM 6

Consider the potential given by

$$
\Pi[u]=\int_{0}^{1} \frac{1}{2}\left(\frac{d u}{d x}\right)^{2} d x+\int_{0}^{1} \frac{u^{2}}{2} d x+\int_{0}^{1} x^{3} u d x
$$

Find $\langle\delta \Pi, \delta u\rangle$.
Solution :

$$
\langle\delta \Pi, \delta u\rangle=\left.\frac{d \Pi\left[u^{*}\right]}{d \alpha}\right|_{\alpha=0}
$$

where $u^{*}=u+\alpha w$ where $w \in \mathcal{V}$ and $\alpha \in \mathbb{R}$

$$
\begin{aligned}
\langle\delta \Pi, \delta u\rangle & =\left.\frac{d \Pi\left[u^{*}\right]}{d \alpha}\right|_{\alpha=0} \\
& =\left.\frac{d}{d \alpha}\left(\int_{0}^{1} \frac{1}{2}\left(\frac{d u^{*}}{d x}\right)^{2} d x+\int_{0}^{1} \frac{u^{* 2}}{2} d x+\int_{0}^{1} x^{3} u^{*} d x\right)\right|_{\alpha=0} \\
& =\left.\frac{d}{d \alpha}\left(\int_{0}^{1} \frac{1}{2}\left(\frac{d(u+\alpha w)}{d x}\right)^{2} d x+\int_{0}^{1} \frac{(u+\alpha w)^{2}}{2} d x+\int_{0}^{1} x^{3}(u+\alpha w) d x\right)\right|_{\alpha=0} \\
& =\left.\left(\int_{0}^{1}\left(\frac{d(u+\alpha w)}{d x}\right) \frac{d w}{d x} d x+\int_{0}^{1}(u+\alpha w) w d x+\int_{0}^{1} x^{3} w d x\right)\right|_{\alpha=0} \\
& =\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x+\int_{0}^{1} u w d x+\int_{0}^{1} x^{3} w d x
\end{aligned}
$$

