MID-TERM PRACTICE QUESTIONS

CEE 361-513: Introduction to Finite Element Methods

Thurday Oct. 19
This are some example questions to sharpen your skills for the mid-term. In addition you should review the
homework, precepts, and lecture notes, as well as Chapter 1.1 - 1.9 and 1.12 - 1.14 of the Hughes book.

PROBLEM 1

1. Let d =2. u= x1x2 + ¢ be a scalar where c is any arbitrary constant. Find Vu and V - (Vu).

Solution :

du
Vu= di)(,e,
= Xp€1 + X1€n
d(Vu
7 (7= 4T
=0

2. Let d =3. u = xyx3e1 + xox3€>. Find the gradient of u.

Solution :

_du
T dx

= xz3€; ®e; + x3ex ey + xj€1 ®e3 + xer X es

Vu

®e;

3. IsT (u) = sin(u - e;)e; + cos(u - ey)e; a tensor?

Solution :

T(au) = sin(ou - e1)e; + cos(au - er)e;

# a(sin(u - ej)es + cos(u - ey)er)

Hence not a tensor.

4. Let x, = 2e; + 5e, and x, = 7e; + 8es. Find the projection tensor that projects vectors along the
direction @ = xp — x,.



Solution :

a=x,— T,

= 5e; + 3es

Unit vector along a

5|s

(5e; + 3ep)

-
~

Projection tensor:
T=n®n

1
= ﬁ (2561 ®e; + 15e; ® e> + 15er, ® e; + 9%e> ® e2)

5. Let {e;}3_; be a set of orthonormal basis. Let a, b, v be three vectors such that b = v — v - aa/|al.
Show that a and b are linearly independent (i.e. ab+a =0= a = 0).

Solution :
Let a1b + axa = 0 for two arbitrary values of a; and ap. If they are linearly

dependent.Taking the dot product with a
a-(a1b+oza)=0
a
a- o <v~v-a 2) +oasa-a=0
lall
azllal* =0
Since this is true for any arbitrary as.
OLQZO
Substituing in the original assumption leads to:

Oé1:O

Hence, b and a are linearly independent.

6. Let tr(A) := A : 1 be the trace of a tensor A. If f = xox3 + x1x3 + x1x2, in which {e;}3_; is a set of
orthonormal basis associated with the cartesian coordinates {x;}3_,. Show that V- (Vf) = tr(V(V(f))).



Solution :

V- (V) =V-((x3+x)er + (x3 + x1)e2 + (x2 + x1)es)
~0

tr(V(V(f))) = tr(V((xs + x2)er + (x3 + x1)es + (xo + x1)es))
:tl’(62®el +e3®e;+eXe+es3s@er +e; X63+82®63)
=(ex;®e;+es3Re; +e;Re+esRe+e;Re;+e;®e;) 1 1
=0

Hence they are equal.

PROBLEM 2

Consider the truss shown below. Foreach node we have associated coordinates g, and associated global degrees
of freedom w,, where both g and u are vectors. All elements have the same E, A.
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Figure 1. The system of uniaxial rods

1. Label each node and element and create a connectivity array.



Solution :

element | i node | j node

=
—
N

O 0 ~N O 01 WN

W WNNOO O WN
01O 01O = O 01 W

=
o

Table 1: Connectivity Array

2. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the local degrees of freedom.

Solution :
For each element the element stiffness matrix could be found as:

ke ke
K. =
ke ke
where k. is given as:
AE
ke="—"non
Le
4G —4q
n= € €
(gf —qf)|

The internal forces as a matrix vector operation could be written as:

_f,‘e ke —ke u?

1

ft ke ke | |uf

3. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the GLOBAL degrees of freedom using the connectivity array.

Solution :
Internal forces in terms of global degree of freedoms for the first two elements:

*f,'l ky —k, uy *f,‘2 k> —k> (%]

.fjl —ki Kk Uz ch2 —k2 k2 us

Similarly others could be written using the connectivity array.

4. For each node write the equilibrium equations in terms of the external forces, the reactions, and the
internal forces.



Solution :

Ry=—f'+f]
P=fl—f—f -1
Ps=f—f - —1"°
P4:fj3_.f/'4
P5=—f,'5+ﬁ+fjlo+fjs
Pﬁ*j}5*f,'6+fj7+f19

5. Write down the equilibrium equations in matrix form. Namely, as we did in class, write the equilibrium
equations with a load vector containing reactions and external forces, denoted it by {P}, the stiffness
matrix denoted by [K], and the vector of displacements {U} such that

[K{U} = {P}.
Solution :
‘R, ki + ks —kq —kg ]
—ki kit kot —k> —ks —k7
P, Ky + ks U
? . kg + k1o 3
P, —ks3 ks + ky —ky w
° ks + k1o >
—kg —k- —kq —ks ks + ke+
| Ps | I k7 + ko | 46 ]

6. At the leftmost node we prevent the truss from moving. At the rightmost node we allow the truss to
move along a plane whose unit normal is my. Apply the aforementioned conditions to [K], {P}.



Solution :

P,
P
P,

P

—k,

_k6

OT

ki + ko+
k7 + ks

—kg
—k,

OT

(0] (0] 0]
—ks —k7
—ks3 —k1go —kq
ks + k4 —ky
—kq ks + ks+ —ks
ks + k1o
—ks ks + ke+
k7 + ko
mJ o’ o’

o] - -

U
0

U2
0

us
—ms

U4
0

Us
0

Ue

A
O | L .

7. What is the reaction force at the leftmost node?

Solution :

R =[kitks —ki O O O —ks 0

dispalcements, we can find the reactions.

A1l the dispalcements could be found after solving for the system.

Once we have the

Reaction force at the left-most node.

uy

U

us

uy

Us

Ue

8. What is the reaction force at the rightmost nodes?




Solution :
A1l the dispalcements could be found after solving for the system. Once we have the
dispalcements, we can find the reactions. Reaction force at the right-most node.

Ui
u
us
R4:[O O —k3 ks+kys —ks O —mg] Uy
Us

Ue

PROBLEM 3

Consider the frame shown below. At the lower- and left-most node we constrain the frame from moving in
all directions and we prevent it from rotating. At the upper- and left-most node we have a hinge (hence no
moment can be transferred). At the lowest- and right-most support the frame is allowed to move along a plane
define by the normal ms. All elements have the same E, I, A.
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1. Label each element and node and write the connectivity array.



Solution :

element | i node | j node
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 2 5

Table 2: Connectivity Array

2. For each node write the equilibrium equations in terms of the external force P and moment M, and the

internal forces f7; and moments mf .

Solution :

V= 7.fin1 +.fiSl

1
Ml = _”]i
V- 1 1 2 2
2 .fjn JS /n .f/s jn6 j:/56
2 1 6
M2 — ”)/ /”J' l”,‘

Va=f2— 2= P+

— 2 3
Mz = m; — m;

__ pn3 s3 n4 s4

Vi=fP—fP -+ 1
— 3 4

My = m; — mj

__ pn4 s4 n6 s6 n5 s5
Vs = g +\E Ji +f

Ms = —m; + m} + m?

__ £n5 s5
‘/6_.fj _fi
M1:ITIJ5

3. Write the general expression of internal forces (and moments) as the matrix vector operation of the local
element stiffness and the local degrees of freedom.



Solution :

degrees of freedom.

Vi [Kfw]  [kro]l [~Kgpw]  [kyo]
Mi [kmw]T [kme] [_kmw]T [kme]
Vi [~Kfw] [“kgol [Kpwl [—kgel
A@ [kmuJT [kmd L‘kmuJT [kmd
where:
AcE. 12E./.
K — e e e e
fw ee & + eg X s
4E. 1.
k =
mo Ze
~ 2E.l,
Koo —
m6 Ze
6E./
kmw:k‘f@:fse

For each element e

Internal forces as matrix vector operation of the local element stiffness and local

wij

w;

>

4. For each element write the internal forces (and moments) as the matrix vector operation of the focal
element stiffness and the GLOBAL degrees of freedom using the connectivity array.

Solution :
For element 1

_‘/1_ [ [Klw] [k}e] [_K}’w] [If.]fG] i
Vo| T |[-KD,) SRR (K] K]
Mol Llkhl” kel [FRhw]l” [kl
For element 2

_VQ_ i [K2w] [k?"G] [7K2w] [If%@] i
Mo | [kl [Keel  [kw]” [kl

\& [-K3,] [_Ak?ffe] [K7,] [kl
_M3_ L [kgnw]T [kfgﬁ] [_k?nw]T [krie] J

Ans similarly other elements could be written down.

5. Using K;w, k;ie, ..., write down the equilibrium equations in matrix form.




Solution :
(V1] [w;
My 61
Vs r ol 1 gl 1 1 |ws
M. IffwT kfe IffwT ljfe OT ’ 6>
‘/3 [f:";éli] _k];:nle Kl ;F[k{rgw]—‘r K6 —k:l Jfkfg@ + k6 _?{2 kg w3
Ms| _ | 17 (1 e , 7 I e g A 2 T Azfe 03
‘/4 - [kmw] k meé [7kmw] + [km;u] + [kmw] km@ + km29 + km@ 7[kr727w] k f7279 Wa
‘/'5 0 0 [kmw] k mé [_km'w] km@ ws
Ms L 4|65
Vs ws
_M6_ L 95 -
The matrix is incomplete. But this should get you started and you can fill the rest of
the terms.
6. At the lower- and left-most node we constrain the frame from moving in all directions and we prevent it
from rotating. At the upper- and left-most node we have a hinge (hence no moment can be transferred).
At the lowest- and right-most support the frame is allowed to move along a plane define by the normal
ms. Apply the aforementioned conditions to the matrix form of the previous step.
Solution :
We need to add an extra row and column to accomodate for the lagrange multiplier and
update the boundary conditions.
0] r I 0 0] 0 o 0 1 [w,
0 or 1 or 0 o’ 0 04
v, —K}, —ko K;,+ K3, + K%, —kjo+ ko + K K}, ki wo
M2 [krln'w]T klme [7kr1n'w]T + [k%n'w]T + [k:?nw]T kl%nG + kr%@ + ksﬁ 7[kr2nw]T k2m9 92
12 o o ~K2, k2 K2, ki ws
M3 o 0 k2,17 K2 e 70 LA = 03
Vil = wy
My 04
Vs Ws
Ms 05
Ve —Ms ws
Ms 05
L O - L - >\ -
Again the matrix is incomplete, but this should get you started.

7. How would you determine the reactions?

10




Solution :

Once we have found the dispalcement by solving the system updated with the boundary
conditions, we can obtain the reactions by matrix-vector operation between the original
global stiffness matrix and the now known degrees of freedom. So for example, if we are
looking for reaction R; and M;, the matrix-vector operation would be:

6
R Kl kL —-K1 kL o 0 .. .. 3

1 _ ) fwT 1f9 . fwT Alf@ - wa
M, kLol kio —[kL,]T Kklme OT 0 ... ..

PROBLEM 4
Consider the following strong form: find v : (0,1) — R such that
du 3
—W+u+x =0, VXE(O,].)

For each of the following boundary conditions, state the set of trial and test functions and derive the weak form.

i u(0) =go, u(l) =g
Solution :
The set of trial functions S:

S = {uju € Smooth, u(0) = go, u(1l) = g1}
The set of test functions V:
V = {w|w € Smooth, w(0) =0, w(1) = 0}

Multiplying both the sides by the weight w and integrating:

1 42, 1 1
—/—2de+/uwdx+/x3wdx:0
o dx 0 0
du

1 1 1 1
dud
- —w| + auaw dx+/uwdx+/ 3w odx=0
ax |, o dx dx 0 0

ld d 1 1
/—U—W dx+/uwdx+/ 3w odx=0
o dx dx 0 0

11




ii. 94(0) = ho, u(1) = g

Solution :
The set of trial functions S:

S ={ulu € Smooth,u(1) = g1}
The set of test functions V:
V ={w|w € Smooth, w(1) = 0}

Multiplying both the sides by the weight w and integrating:

1 1
—de—i— u w dx—+ x3w dx=0
dx2 0
d d 1 1
/—U—Wd+/uwdx+/x3wdx:0
dx dx 0 0

du dw ! by
hOW(O)+/ d—ad +/ uwdx+/oxvvdx—0

iii. U(O) = Jdo, du(l) = h1

Solution :
The set of trial functions S:

S = {ulu € Smooth, u(0) = go}
The set of test functions V:
V = {w|w € Smooth, w(0) = 0}
Multiplying both the sides by the weight w and integrating:
1 42y 1 1
—— W dx+/ u w dx+/ x*w dx =0
o dx 0 0

! U du dw
0 dx dx

du

1 1
- —Ww dx+/uwdx+/ 2w dx =0
dx |, 0 0

d d 1 1
— hiw(1) + ooy dx+/ u w dx+/ x*w dx =0
o dx dx 0 0

PROBLEM 5

For the above BVP derive the matrix form and, assuming linear shape functions as shown in class,

i. Derive the element stiffness matrix

12



Solution :

For an element, the linear shape functions are given by:

&€
¢1_52*€1
3!
¢27§2*€1

For us & =0 and & = 1. The stiffness term for the above BVP is given by:

_ ([ didey (dx\T b dx

Substituting the value of ¢; and ¢; we obtain:

K¢ =

where h® is the length of the element.

ii. Assuming we discretize (0, 1) into two elements, with the element stiffness matrix derived above, assemble
the global stiffness matrix.

Solution :
Uisng the element stiffness matrix from above we have:
) 3 23
k-|% T
12 6
5 13 =23
k-|% T
12 6
The Global stiffness matrix:
13 =23
6 12 0
_ | =23 13 23
K=l 3 12
-23 13
0 2 6
PROBLEM 6
Consider the potential given by
1 2 1,2 1
1 /du u
Nu] = —|—) dx+ —dx+ [ xPudx.

13



Find (01, du).

Solution :

dNju]

(6N, éu) = Jor

a=0
where u* = U+ aw where w €)Y and o € R

dn[u*]
do a=0

d 11 du* 2 1U*2 1 .
_da</02(dx) dx+/o > dx—i—/oxu dx
a=0
d L1 fd(u+aw)\? Y (u+ aw)? L.
da(/o Q(dx) dx—i—/o #dx—&—/ox(u—l—aw) dx
1 1 1
:(/ (d(quaW))dW dx+/(u+aw)w dx+/ 3w dx)
0 dx dx 0 0

1 1 1
dud
:/ duaw dx+/ uw dx+/ 3w dx
o dx dx 0 0

(6N, duy =

a=0

a=0

14



	
	
	
	
	
	

