
MID-TERM PRACTICE QUESTIONS
CEE 361-513: Introduction to Finite Element Methods

Thurday Oct. 19
This are some example questions to sharpen your skills for the mid-term. In addition you should review the

homework, precepts, and lecture notes, as well as Chapter 1.1 - 1.9 and 1.12 - 1.14 of the Hughes book.

PROBLEM 1

1. Let d = 2. u = x1x2 + c be a scalar where c is any arbitrary constant. Find ∇u and ∇ · (∇u).
Solution :

∇u =
du

dxi
ei

= x2e1 + x1e2

∇ · (∇u) =
d(∇u)

dxi
· ei

= 0

2. Let d = 3. u = x1x3e1 + x2x3e2. Find the gradient of u.
Solution :

∇u =
du

dxi
⊗ ei

= x3e1 ⊗ e1 + x3e2 ⊗ e2 + x1e1 ⊗ e3 + x2e2 ⊗ e3

3. Is T (u) = sin(u · e1)e2 + cos(u · e2)e1 a tensor?
Solution :

T (αu) = sin(αu · e1)e2 + cos(αu · e2)e1
6= α(sin(u · e1)e2 + cos(u · e2)e1)

Hence not a tensor.

4. Let xa = 2e1 + 5e2 and xb = 7e1 + 8e2. Find the projection tensor that projects vectors along the
direction a = xb − xa.
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Solution :

a = xb − xa

= 5e1 + 3e2

Unit vector along a

n =
a

||a||

=
1√
34

(5e1 + 3e2)

Projection tensor:

T = n⊗ n

=
1

34
(25e1 ⊗ e1 + 15e1 ⊗ e2 + 15e2 ⊗ e1 + 9e2 ⊗ e2)

5. Let {ei}3i=1 be a set of orthonormal basis. Let a, b,v be three vectors such that b = v − v · aa/‖a‖2.
Show that a and b are linearly independent (i.e. αb + a = 0⇒ α = 0).
Solution :
Let α1b + α2a = 0 for two arbitrary values of α1 and α2. If they are linearly
dependent.Taking the dot product with a

a · (α1b + α2a) = 0

a · α1
(
v − v · a

a

||a||2

)
+ α2a · a = 0

α2||a||2 = 0

Since this is true for any arbitrary α2.

α2 = 0

Substituing in the original assumption leads to:

α1 = 0

Hence, b and a are linearly independent.

6. Let tr(A) := A : 1 be the trace of a tensor A. If f = x2x3 + x1x3 + x1x2, in which {ei}3i=1 is a set of
orthonormal basis associated with the cartesian coordinates {xi}3i=1. Show that ∇ · (∇f ) = tr(∇(∇(f ))).
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Solution :

∇ · (∇f ) = ∇ · ((x3 + x2)e1 + (x3 + x1)e2 + (x2 + x1)e3)

= 0

tr(∇(∇(f ))) = tr(∇((x3 + x2)e1 + (x3 + x1)e2 + (x2 + x1)e3))

= tr(e2 ⊗ e1 + e3 ⊗ e1 + e1 ⊗ e2 + e3 ⊗ e2 + e1 × e3 + e2 ⊗ e3)
= (e2 ⊗ e1 + e3 ⊗ e1 + e1 ⊗ e2 + e3 ⊗ e2 + e1 ⊗ e3 + e2 ⊗ e3) : 1

= 0

Hence they are equal.

PROBLEM 2

Consider the truss shown below. Foreach node we have associated coordinates qz and associated global degrees
of freedom uz , where both q and u are vectors. All elements have the same E,A.

w w w

w

P

T

mS
x2

x1

e2

e1

Figure 1: The system of uniaxial rods

1. Label each node and element and create a connectivity array.
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Solution :

element i node j node
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 6 1
7 2 6
8 2 5
9 3 6
10 3 5

Table 1: Connectivity Array

2. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the local degrees of freedom.
Solution :
For each element the element stiffness matrix could be found as:

Ke =

ke ke

ke ke


where ke is given as:

ke =
AeEe
`e

n⊗ n

n =
qej − qei
|(qej − qei )|

The internal forces as a matrix vector operation could be written as:−f ei
f ej

 =

 ke −ke

−ke ke

uei
uej



3. For each element write the internal forces as the matrix vector operation of the local element stiffness
and the GLOBAL degrees of freedom using the connectivity array.
Solution :
Internal forces in terms of global degree of freedoms for the first two elements:−f1i

f1j

 =

 k1 −k1

−k1 k1

u1
u2

 −f2i
f2j

 =

 k2 −k2

−k2 k2

u2
u3


Similarly others could be written using the connectivity array.

4. For each node write the equilibrium equations in terms of the external forces, the reactions, and the
internal forces.
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Solution :

R1 = −f1i + f6j

P2 = f1j − f2i − f7i − f8i

P3 = f2j − f3i − f9i − f10i

P4 = f3j − f4i

P5 = −f5i + f4j + f10j + f8j

P6 = f5j − f6i + f7j + f9j

5. Write down the equilibrium equations in matrix form. Namely, as we did in class, write the equilibrium
equations with a load vector containing reactions and external forces, denoted it by {P}, the stiffness
matrix denoted by [K], and the vector of displacements {U} such that

[K]{U} = {P}.

Solution :



R1

P2

P3

P4

P5

P6



=



k1 + k6 −k1 −k6

−k1 k1 + k2+ −k2 −k8 −k7
k7 + k8
−k2 k2 + k3+ −k3 −k10 −k9

k9 + k10
−k3 k3 + k4 −k4

−k8 −k10 −k4 k4 + k5+ −k5
k8 + k10

−k6 −k7 −k9 −k5 k5 + k6+

k7 + k9





u1

u2

u3

u4

u5

u6



6. At the leftmost node we prevent the truss from moving. At the rightmost node we allow the truss to
move along a plane whose unit normal is m2. Apply the aforementioned conditions to [K], {P}.
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Solution :



0

P2

P3

P4

P5

P6

0



=



I O O O O O 0

−k1 k1 + k2+ −k2 −k8 −k7 0

k7 + k8
−k2 k2 + k3+ −k3 −k10 −k9 0

k9 + k10
−k3 k3 + k4 −k4 −m2

−k8 −k10 −k4 k4 + k5+ −k5 0

k8 + k10
−k6 −k7 −k9 −k5 k5 + k6+ 0

k7 + k9
0T 0T 0T mT

2 0T 0T 0





u1

u2

u3

u4

u5

u6
λ



7. What is the reaction force at the leftmost node?
Solution :
All the dispalcements could be found after solving for the system. Once we have the
dispalcements, we can find the reactions. Reaction force at the left-most node.

R1 =
[
k1 + k6 −k1 O O O −k6 0

]



u1

u2

u3

u4

u5

u6
λ



8. What is the reaction force at the rightmost nodes?
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Solution :
All the dispalcements could be found after solving for the system. Once we have the
dispalcements, we can find the reactions. Reaction force at the right-most node.

R4 =
[
O O −k3 k3 + k4 −k4 O −m2

]



u1

u2

u3

u4

u5

u6

λ



PROBLEM 3

Consider the frame shown below. At the lower- and left-most node we constrain the frame from moving in
all directions and we prevent it from rotating. At the upper- and left-most node we have a hinge (hence no
moment can be transferred). At the lowest- and right-most support the frame is allowed to move along a plane
define by the normal mS. All elements have the same E, I, A.

w = 2h

h

h

P

M

mS

x2

x1

e2

e1

1. Label each element and node and write the connectivity array.
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Solution :

element i node j node
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 2 5

Table 2: Connectivity Array

2. For each node write the equilibrium equations in terms of the external force P and moment M, and the
internal forces f ei,j and moments me

i,j .
Solution :

V1 = −fn1i + f s1i

M1 = −m1i
V2 = fn1j − f s1j − fn2i + f s2i − fn6i + f s6i

M2 = −m2i +m1j −m6i
V3 = fn2j − f s2j − fn3i + f s3i

M3 = m2j −m3i
V4 = fn3j − f s3j − fn4i + f s4i

M4 = m3j −m4i
V5 = fn4j − f s4j + fn6j − f s6j − fn5i + f s5i

M5 = −m5i +m4j +m6j

V6 = fn5j − f s5i

M1 = m5j

3. Write the general expression of internal forces (and moments) as the matrix vector operation of the local
element stiffness and the local degrees of freedom.

8



Solution :
Internal forces as matrix vector operation of the local element stiffness and local
degrees of freedom. 

Vi
Mi

Vj
Mj

 =


[Kfw] [kfθ] [−Kfw] [kfθ]

[kmw]T [kmθ] [−kmw]T [k̂mθ]

[−Kfw] [−kfθ] [Kfw] [−kfθ]

[kmw]T [k̂mθ] [−kmw]T [kmθ]



wi

θi
wj

θj


where:

Kfw =
AeEe
`e

ne ⊗ ne +
12EeIe
`3e

se ⊗ se

kmθ =
4EeIe
`e

k̂mθ =
2EeIe
`e

kmw = kfθ =
6EeIe
`2e

se

For each element e

4. For each element write the internal forces (and moments) as the matrix vector operation of the local
element stiffness and the GLOBAL degrees of freedom using the connectivity array.
Solution :
For element 1 

V1
M1
V2
M2

 =


[K1

fw] [k1fθ] [−K1
fw] [k1fθ]

[k1mw]T [k1mθ] [−k1mw]T [k̂1mθ]

[−K1
fw] [−k1fθ] [K1

fw] [−k1fθ]

[k1mw]T [k̂1mθ] [−k1mw]T [k1mθ]



w1
θ1
w2
θ2


For element 2 

V2
M2
V3
M3

 =


[K2

fw] [k2fθ] [−K2
fw] [k2fθ]

[k2mw]T [k2mθ] [−k2mw]T [k̂2mθ]

[−K2
fw] [−k2fθ] [K2

fw] [−k2fθ]

[k2mw]T [k̂2mθ] [−k2mw]T [k2mθ]



w2
θ2
w3
θ3


Ans similarly other elements could be written down.

5. Using Ke
fw,k

e
fθ, . . ., write down the equilibrium equations in matrix form.
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Solution :



V1
M1
V2
M2
V3
M3
V4
M4
V5
M5
V6
M6



=



K1
fw k1fθ −K1

fw k1fθ O 0 ... ...

[k1mw]T k1mθ −[k1mw]T k̂1mθ 0T 0 ... ...

−K1
fw −k1fθ K1

fw + K2
fw + K6

fw −k1fθ + k2fθ + k6fθ −K2
fw k2fθ ... ...

[k1mw]T k̂1mθ [−k1mw]T + [k2mw]T + [k6mw]T k1mθ + k2mθ + k6mθ −[k2mw]T k̂2mθ ... ...

O 0 −K2
fw −k2fθ K2

fw −k2fθ ... ...

0T 0 [k2mw]T k̂2mθ [−k2mw]T k2mθ ... ...

... ... ... ... ... ... ... ...





w1
θ1
w2
θ2
w3
θ3
w4
θ4
w5
θ5
w5
θ5


The matrix is incomplete. But this should get you started and you can fill the rest of
the terms.

6. At the lower- and left-most node we constrain the frame from moving in all directions and we prevent it
from rotating. At the upper- and left-most node we have a hinge (hence no moment can be transferred).
At the lowest- and right-most support the frame is allowed to move along a plane define by the normal
mS. Apply the aforementioned conditions to the matrix form of the previous step.
Solution :

We need to add an extra row and column to accomodate for the lagrange multiplier and
update the boundary conditions.

0

0

V2
M2
V3
M3
V4
M4
V5
M5
V6
M6
0



=



I 0 O 0 O 0 ... ...

0T 1 0T 0 0T 0 ... ...

−K1
fw −k1fθ K1

fw + K2
fw + K6

fw −k1fθ + k2fθ + k6fθ −K2
fw k2fθ ... ...

[k1mw]T k̂1mθ [−k1mw]T + [k2mw]T + [k6mw]T k1mθ + k2mθ + k6mθ −[k2mw]T k̂2mθ ... ...

O 0 −K2
fw −k2fθ K2

fw −k2fθ ... ...

0T 0 [k2mw]T k̂2mθ [−k2mw]T k2mθ ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... −ms

... ... ... ... ... ... ... ...

... ... ... ... ... ... mt
s ...





w1
θ1
w2
θ2
w3
θ3
w4
θ4
w5
θ5
w5
θ5
λ


Again the matrix is incomplete, but this should get you started.

7. How would you determine the reactions?
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Solution :
Once we have found the dispalcement by solving the system updated with the boundary
conditions, we can obtain the reactions by matrix-vector operation between the original
global stiffness matrix and the now known degrees of freedom. So for example, if we are
looking for reaction R1 and M1, the matrix-vector operation would be:

[
R1
M1

]
=

[
K1

fw k1fθ −K1
fw k1fθ O 0 ... ...

[k1mw]T k1mθ −[k1mw]T k̂1mθ 0T 0 ... ...

]



w1
θ1
w2
θ2
w3
θ3
w4
θ4
w5
θ5
w5
θ5
λ



PROBLEM 4

Consider the following strong form: find u : (0, 1)→ R such that

−
d2u

dx2
+ u + x3 = 0, ∀x ∈ (0, 1)

For each of the following boundary conditions, state the set of trial and test functions and derive the weak form.

i. u(0) = g0, u(1) = g1
Solution :
The set of trial functions S:

S = {u|u ∈ Smooth, u(0) = g0, u(1) = g1}

The set of test functions V:

V = {w |w ∈ Smooth, w(0) = 0, w(1) = 0}

Multiplying both the sides by the weight w and integrating:

−
∫ 1
0

d2u

dx2
w dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0

−
du

dx
w

∣∣∣∣1
0

+

∫ 1
0

du

dx

dw

dx
dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0∫ 1
0

du

dx

dw

dx
dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0
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ii. du
dx (0) = h0, u(1) = g1

Solution :
The set of trial functions S:

S = {u|u ∈ Smooth, u(1) = g1}

The set of test functions V:

V = {w |w ∈ Smooth, w(1) = 0}

Multiplying both the sides by the weight w and integrating:

−
∫ 1
0

d2u

dx2
w dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0

−
du

dx
w

∣∣∣∣1
0

+

∫ 1
0

du

dx

dw

dx
dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0

h0w(0) +

∫ 1
0

du

dx

dw

dx
dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0

iii. u(0) = g0, dudx (1) = h1

Solution :
The set of trial functions S:

S = {u|u ∈ Smooth, u(0) = g0}

The set of test functions V:

V = {w |w ∈ Smooth, w(0) = 0}

Multiplying both the sides by the weight w and integrating:

−
∫ 1
0

d2u

dx2
w dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0

−
du

dx
w

∣∣∣∣1
0

+

∫ 1
0

du

dx

dw

dx
dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0

− h1w(1) +

∫ 1
0

du

dx

dw

dx
dx +

∫ 1
0

u w dx +

∫ 1
0

x3w dx = 0

PROBLEM 5

For the above BVP derive the matrix form and, assuming linear shape functions as shown in class,

i. Derive the element stiffness matrix
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Solution :
For an element, the linear shape functions are given by:

φ1 =
ξ2 − ξ
ξ2 − ξ1

φ2 =
ξ − ξ1
ξ2 − ξ1

For us ξ1 = 0 and ξ2 = 1. The stiffness term for the above BVP is given by:

Ki j =

(∫ 1
0

dφi
dξ

dφj
dξ

(
dx̂

dξ

)−1
dξ +

∫ 1
0

φiφj
dx̂

dξ
dξ

)

Substituting the value of φi and φj we obtain:

Ke =

 1
he + he

3
−1
he + he

6

−1
he + he

6
1
he + he

3


where he is the length of the element.

ii. Assuming we discretize (0, 1) into two elements, with the element stiffness matrix derived above, assemble
the global stiffness matrix.
Solution :
Uisng the element stiffness matrix from above we have:

K1 =

[
13
6

−23
12

−23
12

13
6

]
K2 =

[
13
6

−23
12

−23
12

13
6

]
The Global stiffness matrix:

K =


13
6

−23
12 0

−23
12

13
3

−23
12

0 −23
12

13
6



PROBLEM 6

Consider the potential given by

Π[u] =

∫ 1
0

1

2

(
du

dx

)2
dx +

∫ 1
0

u2

2
dx +

∫ 1
0

x3udx.
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Find 〈δΠ, δu〉.
Solution :

〈δΠ, δu〉 =
dΠ[u∗]

dα

∣∣∣∣
α=0

where u∗ = u + αw where w ∈ V and α ∈ R

〈δΠ, δu〉 =
dΠ[u∗]

dα

∣∣∣∣
α=0

=
d

dα

(∫ 1
0

1

2

(
du∗

dx

)2
dx +

∫ 1
0

u∗2

2
dx +

∫ 1
0

x3u∗ dx

)∣∣∣∣∣
α=0

=
d

dα

(∫ 1
0

1

2

(
d(u + αw)

dx

)2
dx +

∫ 1
0

(u + αw)2

2
dx +

∫ 1
0

x3(u + αw) dx

)∣∣∣∣∣
α=0

=

(∫ 1
0

(
d(u + αw)

dx

)
dw

dx
dx +

∫ 1
0

(u + αw)w dx +

∫ 1
0

x3w dx

)∣∣∣∣
α=0

=

∫ 1
0

du

dx

dw

dx
dx +

∫ 1
0

uw dx +

∫ 1
0

x3w dx
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